分析 由$\frac{{|{PA}|}}{{|{PB}|}}=a$可得:$\frac{{\sqrt{{{({x+1})}^2}+{y^2}}}}{{\sqrt{{{({x-1})}^2}+{y^2}}}}=a$,兩邊同時平方并化簡可得(a2-1)x2+(a2-1)y2-2(a2+1)x+a2-1=0,分類討論,判斷軌跡類型.
解答 解:由$\frac{{|{PA}|}}{{|{PB}|}}=a$可得:$\frac{{\sqrt{{{({x+1})}^2}+{y^2}}}}{{\sqrt{{{({x-1})}^2}+{y^2}}}}=a$
兩邊同時平方并化簡可得(a2-1)x2+(a2-1)y2-2(a2+1)x+a2-1=0(1)
當a=1時,方程變?yōu)閤=0,表示y軸,是一條直線;
當a≠1時,(1)式兩邊同時除以(a2-1)可得:${x^2}+{y^2}-\frac{{2({{a^2}+1})x}}{{{a^2}-1}}+1=0$
配方后為:${({x-\frac{{{a^2}+1}}{{{a^2}-1}}})^2}+{y^2}=\frac{{4{a^2}}}{{{{({{a^2}-1})}^2}}}$,
表示以$({\frac{{{a^2}+1}}{{{a^2}-1}},0})$為圓心,以$\frac{2a}{{|{{a^2}-1}|}}$為半徑的圓.
點評 本題考查軌跡方程,考查分類討論的數學思想,求出軌跡方程是關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com