將4個(gè)相同的白球和5個(gè)相同的黑球全部放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,又要有黑球,且每個(gè)盒子中球數(shù)不能少于2個(gè),那么所有不同的放法的種數(shù)為   
【答案】分析:根據(jù)題意,分2步,①每個(gè)盒子分別先放入一個(gè)白球和黑球,②將剩下的球按顏色不同,放入小盒;分別計(jì)算其情況數(shù)目,由乘法計(jì)數(shù)原理計(jì)算可得答案.
解答:解:根據(jù)題意,分2步,
①每個(gè)盒子分別先放入一個(gè)白球和黑球,有1種放法,
②剩余1個(gè)白球有3種放法,剩余2個(gè)黑球有6種放法,
根據(jù)乘法計(jì)數(shù)原理可得,3×6=18,共18種,
故答案為18.
點(diǎn)評(píng):本題考查分步乘法計(jì)數(shù)原理,做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,…,做第n步有mn種不同的方法,那么完成這件事共有N=m1×m2×m3×…×mn種不同的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、將4個(gè)相同的白球和5個(gè)相同的黑球全部放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,又要有黑球,且每個(gè)盒子中球數(shù)不能少于2個(gè),那么所有不同的放法的種數(shù)為
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、將4個(gè)相同的白球和5個(gè)相同的黑球全部放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,又有黑球,且每個(gè)盒子中球數(shù)不能少于2個(gè),則所有不同的放法的種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都模擬)將4個(gè)相同的白球和5個(gè)相同的黑球全部 放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,又要有黑球,且每個(gè)盒子中都不能同時(shí)只 放入2個(gè)白球和2個(gè)黑球,則所有不同的放法種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:正定中學(xué)2010高三下學(xué)期第一次考試(數(shù)學(xué)理) 題型:單選題

將4個(gè)相同的白球和5個(gè)相同的黑球全部放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,
又要有黑球,且每個(gè)盒子中球數(shù)不能少于2個(gè),則所有不同的放法的種數(shù)為(  )

A.12B.3C.18D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:正定中學(xué)2010高三下學(xué)期第一次考試(數(shù)學(xué)理) 題型:選擇題

將4個(gè)相同的白球和5個(gè)相同的黑球全部放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,

又要有黑球,且每個(gè)盒子中球數(shù)不能少于2個(gè),則所有不同的放法的種數(shù)為(   )

A.12                     B.3                   C.18                  D.6

 

查看答案和解析>>

同步練習(xí)冊(cè)答案