已知偶函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,且x∈[3,4]時(shí),f(x)=2x-1,則:x∈[14,15]時(shí),函數(shù)f(x)的解析式為   
【答案】分析:由已知可得,f(x)=f(-x),f(2+x)=f(-x),聯(lián)立可得f(x)是以2為周期的周期函數(shù),,而當(dāng)x∈[14,15],18-x∈[3,4],代入可求
解答:解:∵函數(shù)f(x)是偶函數(shù)
∴f(x)=f(-x) ①
∵函數(shù)的圖象關(guān)于x=1對(duì)稱,
∴f(1-x)=f(1+x)即f(2+x)=f(-x)②
①②聯(lián)立可得f(x+2)=f(x)
所以f(x)是周期函數(shù),周期為2
x∈[14,15],x-18∈[-4,-3],18-x∈[3,4]
∵x∈[3,4]時(shí),f(x)=2x-1,
∴f(18-x)=2(18-x)-1=35-2x
∴f(x)=35-2x
故答案為:f(x)=35-2x
點(diǎn)評(píng):本題主要考 查了利用函數(shù)的對(duì)稱性及偶函數(shù)的性質(zhì)求解函數(shù)的周期,及利用周期求解函數(shù)在某一區(qū)間上的函數(shù)解析式,解題的關(guān)鍵是把所求的函數(shù)的x轉(zhuǎn)化到區(qū)間上去
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),當(dāng)x<0時(shí),f(x)=x3+1,求當(dāng)x>0時(shí)f(x)表達(dá)式;并寫出f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)的定義域?yàn)镽,且在(-∞,0)上是增函數(shù),則f(-
3
4
)與f(a2-a+1)(a∈R)的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,且x∈[3,4]時(shí),f(x)=2x-1,則:x∈[14,15]時(shí),函數(shù)f(x)的解析式為
f(x)=35-2x
f(x)=35-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)的圖象與x軸有五個(gè)公共點(diǎn),那么方程f(x)=0的所有實(shí)根之和為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)的定義域?yàn)镽,且在(-∞,0)上是增函數(shù),M=f(
3
4
)
,N=f(a2-a+1)(a∈R),則M與N的大小關(guān)系( 。
A、M≥NB、M≤N
C、M<ND、M>N

查看答案和解析>>

同步練習(xí)冊(cè)答案