4.若loga2=m,loga3=n,(a>0且a≠1)則a2m+n=12.

分析 把對(duì)數(shù)式化為指數(shù)式,再利用指數(shù)冪的運(yùn)算性質(zhì)即可得出.

解答 解:∵loga2=m,loga3=n,(a>0且a≠1),
∴am=2,an=3.
則a2m+n=(am2•an=22×3=12.
故答案為:12.

點(diǎn)評(píng) 本題考查了指數(shù)冪與對(duì)數(shù)的運(yùn)算法則、對(duì)數(shù)式與指數(shù)式的互化,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
(Ⅰ)證明:A1C1=AB1
(Ⅱ)若AC⊥AB1,∠BCC1=120°,AB=BC,求二面角A-A1B1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求符合下列條件的雙曲線的標(biāo)準(zhǔn)方程
(1)焦點(diǎn)在x軸上,頂點(diǎn)間的距離為6,漸近線方程為y=±$\frac{1}{3}x$
(2)與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1共焦點(diǎn),它們的離心率之和為$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Tn,已知an>0,(an+1)2=4(Sn+1),bnSn-1=(n+1)2,其中n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若α,β為銳角,且滿足cosα=$\frac{4}{5}$,cos(α+β)=$\frac{5}{13}$,則sinβ的值為(  )
A.-$\frac{16}{65}$B.$\frac{33}{65}$C.$\frac{56}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點(diǎn)分別為F1、F2,直線l過F2且與雙曲線交于A、B兩點(diǎn).
(1)若l的傾斜角為$\frac{π}{2}$,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設(shè)b=$\sqrt{3}$,若l的斜率存在,M為AB的中點(diǎn),且$\overrightarrow{FM}$•$\overrightarrow{AB}$=0,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.命題“如果a=4,那么方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1表示焦點(diǎn)在x軸上的橢圓”的逆命題( 。
A.是真命題B.是假命題C.沒有逆命題D.無(wú)法確定真假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)集合M={x|-1≤x≤2},N={x|x≤a},若M⊆N,則a的取值范圍是( 。
A.a≤2B.a≥2C.a≤-1D.a≥-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=2sin(ωx-φ)-1(ω>0,|φ|<π)的一個(gè)零點(diǎn)是x=$\frac{π}{3}$,直線x=-$\frac{π}{6}$函數(shù)圖象的一條對(duì)稱軸,則ω取最小值時(shí),f(x)的單調(diào)增區(qū)間是( 。
A.[-$\frac{π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈ZB.[-$\frac{5π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z
C.[-$\frac{2π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈ZD.[-$\frac{π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈Z

查看答案和解析>>

同步練習(xí)冊(cè)答案