A. | [-$\frac{π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z | B. | [-$\frac{5π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z | ||
C. | [-$\frac{2π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈Z | D. | [-$\frac{π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈Z |
分析 根據函數f(x)的一個零點是x=$\frac{π}{3}$,得出f($\frac{π}{3}$)=0,再根據直線x=-$\frac{π}{6}$是函數f(x)圖象的一條對稱軸,得出-$\frac{π}{6}$ω-φ=$\frac{π}{2}$+kπ,k∈Z;由此求出ω的最小值與對應φ的值,寫出f(x),求出它的單調增區(qū)間即可.
解答 解:函數f(x)=2sin(ωx-φ)-1的一個零點是x=$\frac{π}{3}$,
∴f($\frac{π}{3}$)=2sin($\frac{π}{3}$ω-φ)-1=0,
∴sin($\frac{π}{3}$ω-φ)=$\frac{1}{2}$,
∴$\frac{π}{3}$ω-φ=$\frac{π}{6}$+2kπ或$\frac{π}{3}$ω-φ=$\frac{5π}{6}$+2kπ,k∈Z;
又直線x=-$\frac{π}{6}$是函數f(x)圖象的一條對稱軸,
∴-$\frac{π}{6}$ω-φ=$\frac{π}{2}$+kπ,k∈Z;
又ω>0,|φ|<π,
∴ω的最小值是$\frac{2}{3}$,φ=-$\frac{11π}{18}$,
∴f(x)=2sin($\frac{2}{3}$x+$\frac{11π}{18}$)-1;
令-$\frac{π}{2}$+2kπ≤$\frac{2}{3}$x+$\frac{11π}{18}$≤$\frac{π}{2}$+2kπ,k∈Z,
∴-$\frac{5π}{3}$+3kπ≤x≤-$\frac{π}{6}$+3kπ,k∈Z;
∴f(x)的單調增區(qū)間是[-$\frac{5π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z.
故選:B.
點評 本題考查了正弦型三角函數的圖象與性質的應用問題,是綜合性題目.
科目:高中數學 來源: 題型:選擇題
A. | $\left\{{x|\frac{π}{4}+2kπ≤x≤\frac{5π}{4}+2kπ,k∈Z}\right\}$ | B. | $\left\{{x|\frac{π}{8}+kπ≤x≤\frac{5π}{8}+kπ,k∈Z}\right\}$ | ||
C. | $\left\{{x|\frac{π}{8}+2kπ≤x≤\frac{5π}{8}+2kπ,k∈Z}\right\}$ | D. | $\left\{{x|\frac{π}{4}+kπ≤x≤\frac{5π}{4}+kπ,k∈Z}\right\}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1<a<2 | B. | 1≤a≤2 | C. | 1<a<3 | D. | 1≤a≤3 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com