分析 (Ⅰ)由條件可知,${S_{n+1}}-{S_n}={S_n}+{2^{n+1}}$,即${S_{n+1}}-2{S_n}={2^{n+1}}$,整理得$\frac{{{S_{n+1}}}}{{{2^{n+1}}}}-\frac{S_n}{2^n}=1$,即可證明.
(Ⅱ)由(1)可知,$\frac{S_n}{2^n}=1+n-1=n$,即${S_n}=n•{2^n}$,利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 (Ⅰ)證明:由條件可知,${S_{n+1}}-{S_n}={S_n}+{2^{n+1}}$,即${S_{n+1}}-2{S_n}={2^{n+1}}$,
整理得$\frac{{{S_{n+1}}}}{{{2^{n+1}}}}-\frac{S_n}{2^n}=1$,
∴數(shù)列$\{\frac{S_n}{2^n}\}$是以1為首項(xiàng),1為公差的等差數(shù)列.
(Ⅱ)由(1)可知,$\frac{S_n}{2^n}=1+n-1=n$,即${S_n}=n•{2^n}$,
令Tn=S1+S2+…+Sn${T_n}=1•2+2•{2^2}+…+n•{2^n}$①
$2{T_n}=1•{2^2}+…+(n-1)•{2^n}+n•{2^{n+1}}$②
①-②,$-{T_n}=2+{2^2}+…+{2^n}-n•{2^{n+1}}$,
整理得${T_n}=2+(n-1)•{2^{n+1}}$.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | (0,$\frac{1}{4}$)∪$\frac{1}{2}$,+∞) | C. | ($\frac{1}{4}$,+∞) | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
合計(jì) |
P(X2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{7}{2}$ | D. | 1或$\frac{7}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com