【題目】下列四個(gè)命題:
①函數(shù)的最大值為1;
②已知集合,則集合A的真子集個(gè)數(shù)為3;
③若為銳角三角形,則有
;
④“”是“函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增”的充分必要條件.
其中正確的命題是______.(填序號(hào))
【答案】②③④
【解析】
由二倍角公式結(jié)合正弦函數(shù)的性質(zhì)判斷①;由集合的知識(shí)判斷②;由銳角三角形的定義以及正弦函數(shù)的單調(diào)性,結(jié)合誘導(dǎo)公式判斷③;由二次函數(shù)的圖象和性質(zhì),集合充分必要條件的定義判斷④.
由,得
的最大值為
,故①錯(cuò)誤;
,則集合
的真子集為
,共有三個(gè),故②正確;
為銳角三角形,
,則
在
上為增函數(shù),
同理可證,
,故③正確;
當(dāng)時(shí),函數(shù)
在區(qū)間
的解析式為
,由對(duì)稱(chēng)軸
可知,函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增
若函數(shù)在區(qū)間
內(nèi)單調(diào)遞增,結(jié)合二次函數(shù)的對(duì)稱(chēng)軸,可知
,則
即“”是“函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增”的充分必要條件.故④正確;
故答案為:②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知?jiǎng)又本
的參數(shù)方程:
,(
為參數(shù),
) ,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線
恰好有2個(gè)公共點(diǎn)時(shí),求直線
的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)時(shí),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:平面AEC;
(2)設(shè)AP=1,AD=,三棱錐P-ABD的體積V=
,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,底面
為菱形,
,
,
與
相交于
點(diǎn),四邊形
為直角梯形,
,
,
,平面
底面
.
(1)證明:平面平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線
在點(diǎn)
處切線的方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),
恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,、
是過(guò)點(diǎn)
夾角為
的兩條直線,且與圓心為
,半徑長(zhǎng)為
的圓分別相切,設(shè)圓周上一點(diǎn)
到
、
的距離分別為
、
,那么
的最小值為(____).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將編號(hào)為1,2,…,18的18名乒乓球運(yùn)動(dòng)員分配在9張球臺(tái)上進(jìn)行單打比賽,規(guī)定每一張球臺(tái)上兩選手編號(hào)之和均為大于4的平方數(shù).記{7號(hào)與18號(hào)比賽}為事件p.則p為( 。
A. 不可能事件 B. 概率為的隨機(jī)事件
C. 概率為的隨機(jī)事件 D. 必然事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面
平面
,
為棱
上的一點(diǎn),且
,
為棱
的中點(diǎn),
為棱
上的一點(diǎn),若
平面
,
是邊長(zhǎng)為4的正三角形,
,
.
(1)求證:平面平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com