在長方體ABCD-A1B1C1D1中,AD=1,AA1=AB=2.點(diǎn)E是線段AB上的動點(diǎn),點(diǎn)M為D1C的中點(diǎn).

(1)當(dāng)E點(diǎn)是AB中點(diǎn)時,求證:直線ME‖平面ADD1 A1;
(2)若二面角AD1EC的余弦值為.求線段AE的長.

(1)證明:見解析;(2).

解析試題分析:(1)證明:取的中點(diǎn)N,連結(jié)MN、AN、,由三角形中位線定理得到
MN∥,AE∥,所以四邊形MNAE為平行四邊形,可知 ME∥AN,即得證.
(2)利用空間向量.
設(shè),建立空間直角坐標(biāo)系,將問題轉(zhuǎn)化成計算平面的“法向量”夾角的余弦,建立的方程.
試題解析:((1)證明:取的中點(diǎn)N,連結(jié)MN、AN、,           1分
MN∥,AE∥,                        3分
四邊形MNAE為平行四邊形,可知 ME∥AN          4分


∥平面.                                  6分
(2)設(shè),如圖建立空間直角坐標(biāo)系         7分

,
平面的法向量為,由                  9分
平面的法向量為,由                    11分
,即,解得
所以                                                 12分
考點(diǎn):直線與平面平行的判定,二面角,距離的計算,空間向量的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面底面,且△PAD為等腰直角三角形,,E、F分別為PC、BD的中點(diǎn).

(1)求證:EF//平面PAD;
(2)求證:平面平面 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點(diǎn).求證:

(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.

(1)求證:AB∥平面PCD;
(2)求證:BC⊥平面PAC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,長方體中,,點(diǎn)的中點(diǎn).

(1)求證:直線平面
(2)求證:平面平面;
(3)求與平面所成的角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,,,°,平面平面,分別為、中點(diǎn).

(1)求證:∥平面;
(2)求證:
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,底面為梯形,, ,平面,的中點(diǎn)

(Ⅰ)證明:
(Ⅱ)若,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面為矩形,且,,,,

(Ⅰ)平面PAD與平面PAB是否垂直?并說明理由;
(Ⅱ)求直線PC與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)證明:平面PAB⊥平面PBC;
(2)若PA=,PC與側(cè)面APB所成角的余弦值為,PB與底面ABC成60°角,求二面角B―PC―A的大小。

查看答案和解析>>

同步練習(xí)冊答案