14.若集合A={1,sinθ},B={$\frac{1}{2}$,2},則“θ=$\frac{5π}{6}$”是“A∩B={${\frac{1}{2}}$}”的( 。
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

分析 根據(jù)集合的基本運算以及充分條件和必要條件的定義進行判斷即可.

解答 解:∵A∩B={${\frac{1}{2}}$},∴sinθ=${\frac{1}{2}}$,則當(dāng)θ=$\frac{π}{6}$時,也滿足條件.,故必要性不成立,
若θ=$\frac{5π}{6}$,則sinθ=sin$\frac{5π}{6}$=$\frac{1}{2}$,則A={1,$\frac{1}{2}$},滿足A∩B={${\frac{1}{2}}$},即充分性成立,
故“θ=$\frac{5π}{6}$”是“A∩B={${\frac{1}{2}}$}”的充分不必要條件,
故選:C

點評 本題主要考查充分條件和必要條件的判斷,根據(jù)集合的基本運算結(jié)合充分條件和必要條件的定義是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.省農(nóng)科站要檢測某品牌種子的發(fā)芽率,計劃采用隨機數(shù)表法從該品牌800粒種子中抽取60粒進行檢測,現(xiàn)將這800粒種子編號如下001,002,…,800,若從隨機數(shù)表第8行第7列的數(shù)7開始向右讀,則所抽取的第4粒種子的編號是( 。ㄈ绫硎请S機數(shù)表第7行至第9行)
A.105B.507C.071D.717

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.用數(shù)字l,2,3,4,5,6組成的沒有重復(fù)數(shù)字的六位數(shù),其中個位數(shù)字小于十位數(shù)字的六位數(shù)的個數(shù)是360.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知四面體A-ABD滿足下列條件:
(1)有一個面是邊長為1的等邊三角形;
(2)有兩個面是等腰直角三角形.
那么四面體A-BCD的體積的取值集合是( 。
A.{$\frac{1}{2}$,$\frac{\sqrt{2}}{12}$}B.{$\frac{1}{6}$,$\frac{\sqrt{3}}{12}$}C.{$\frac{\sqrt{2}}{12}$,$\frac{\sqrt{3}}{12}$,$\frac{\sqrt{2}}{24}$}D.{$\frac{1}{6}$,$\frac{\sqrt{2}}{12}$,$\frac{\sqrt{2}}{24}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.△ABC的三邊分別為a,b,c且滿足b2=ac,2sinB=sinA+sinC,則此三角形是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=7+ax-1的圖象恒過點P,則P點的坐標(biāo)是(1,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若△ABC的頂點為A(3,6),B(-1,5),C(1,1),則BC邊上的中線AD的長為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{13}=1({a>0})$與雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=1$有相同的焦點,則a的值為(  )
A.$\sqrt{19}$B.19C.25D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在平面直角坐標(biāo)系xOy中,滿足x2+y2≤1,x≥0,y≥0的點P(x,y)的集合對應(yīng)的平面圖形的面積為$\frac{π}{4}$;類似的,在空間直角坐標(biāo)系O-xyz中,滿足x2+y2+z2≤1,x≥0,y≥0,z≥0的點P(x,y,z)的集合對應(yīng)的空間幾何體的體積為( 。
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊答案