精英家教網 > 高中數學 > 題目詳情
4.在平面直角坐標系xOy中,滿足x2+y2≤1,x≥0,y≥0的點P(x,y)的集合對應的平面圖形的面積為$\frac{π}{4}$;類似的,在空間直角坐標系O-xyz中,滿足x2+y2+z2≤1,x≥0,y≥0,z≥0的點P(x,y,z)的集合對應的空間幾何體的體積為(  )
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

分析 類似的,在空間直角坐標系O-xyz中,滿足x2+y2+z2≤1,x≥0,y≥0,z≥0的點P(x,y)的集合對應的空間幾何體的體積為球的體積的$\frac{1}{8}$,即可得出結論.

解答 解:類似的,在空間直角坐標系O-xyz中,滿足x2+y2+z2≤1,x≥0,y≥0,z≥0的點P(x,y)的集合對應的空間幾何體的體積為球的體積的$\frac{1}{8}$,即$\frac{1}{8}×\frac{4}{3}π×{1}^{3}$=$\frac{π}{6}$,
故選:B.

點評 類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

14.若集合A={1,sinθ},B={$\frac{1}{2}$,2},則“θ=$\frac{5π}{6}$”是“A∩B={${\frac{1}{2}}$}”的( 。
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知平面向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(m,2),且$\vec a⊥\vec b$,則m=1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知如圖:四邊形ABCD是矩形,BC⊥平面ABE,且AE=2$\sqrt{3}$,EB=BC=2,點F為CE上一點,且BF⊥平面ACE.
(1)求證:AE∥平面BFD;
(2)求三棱錐A-DBE的體積;
(3)求二面角D-BE-A的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.如圖,正方體ABCD-A1B1C1D1中,E為線段B1C的中點,若三棱錐E-ADD1外接球的體積為36π,則正方體的棱長為( 。
A.2B.2$\sqrt{2}$C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.x,y滿足條件$\left\{{\begin{array}{l}{3x-5y+6≥0}\\{2x+3y-15≤0}\\{y≥0}\end{array}}\right.$,則z=x-2y的最小值是-3.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.設$f(x)=\frac{{{x^2}-1}}{lnx}$
(1)求證:f(x)在(0,1)和(1,+∞)上都是增函數;
(2)設x>0且x≠1,a>$\frac{1}{2}$,求證:af(x)>x.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.函數f(x)在x=x0處導數f′(x0)的幾何意義是( 。
A.在點x=x0處的斜率
B.在點 ( x0,f ( x0 ) ) 處的切線與x軸所夾的銳角正切值
C.點 ( x0,f ( x0 ) ) 與點 (0,0 ) 連線的斜率
D.曲線y=f(x)在點 ( x0,f ( x0 ) ) 處的切線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)對任意x∈R都有f(x)+f(1-x)=2.
(1)求$f(\frac{1}{2})$和$f(\frac{1}{n})+f(\frac{n-1}{n})(n∈{N^*})$的值;
(2)數列{an}滿足${a_n}=f(0)+f(\frac{1}{n})+f(\frac{2}{n})+…+f(\frac{n-1}{n})+f(1)$,(n∈N*),求證:{an}是等差數列.
(3)在(2)的情況下,令bn=$\frac{1}{{{a_n}-1}}$,Tn=b1+b2+…+bn,若a>1,對任意n≥2,不等式T2n-Tn>$\frac{7}{12}(1+{log_{a+1}}x-{log_a}x)$恒成立,求x的取值范圍.

查看答案和解析>>

同步練習冊答案