A. | 2x-y+1=0 | B. | 2x-y-1=0 | C. | 2x+y+1=0 | D. | 2x+y-1=0 |
分析 由圓的切線到圓心的距離等于半徑,逐個選項求點到直線的距離可得.
解答 解:與圓(x-1)2+(y+2)2=5相切的直線到圓心(1,-2)的距離等于半徑$\sqrt{5}$,
計算可得圓心(1,-2)到2x-y+1=0的距離d1=$\frac{|2+2+1|}{\sqrt{{2}^{2}+{1}^{2}}}$=$\sqrt{5}$;
圓心(1,-2)到2x-y+-=0的距離d2=$\frac{|2+2-1|}{\sqrt{5}}$=$\frac{4\sqrt{5}}{5}$;
圓心(1,-2)到2x+y+1=0的距離d3=$\frac{|2-2+1|}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$;
圓心(1,-2)到2x+y-1=0的距離d4=$\frac{|2-2-1|}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$.
故選:A.
點評 本題考查直線和圓相切,涉及點到直線的距離公式,屬基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com