【題目】如圖,在四棱錐中,CDAB,,,,E的中點(diǎn).

1)求證:;

2)求P到平面的距離.

【答案】1)見(jiàn)解析(2

【解析】

1)設(shè)M的中點(diǎn)連,可證,得出平面,即可證明結(jié)論;

(2)設(shè)F的中點(diǎn),得,點(diǎn)P到平面的距離就是點(diǎn)P到平面的距離,根據(jù)已知,由(1)的結(jié)論可得平面,再由(1平面,可得,求出的面積,利用,即可求解.

1)如圖6,設(shè)M的中點(diǎn),連,

在梯形中,CDAB, ,

四邊形是平行四邊形,

中,,則,

是平面內(nèi)的兩條相交直線,

所以平面,而在平面內(nèi),

所以.

2)如圖7,設(shè)F的中點(diǎn),則,

點(diǎn)P到平面的距離就是點(diǎn)P到平面的距離,

中,,

所以,又,所以平面,

中,

由(1平面,則,

設(shè)點(diǎn)P到平面的距離為,

,

所以點(diǎn)P到平面的距離即到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】3月底,我國(guó)新冠肺炎疫情得到有效防控,但海外確診病例卻持續(xù)暴增,防疫物資供不應(yīng)求,某醫(yī)療器械廠開(kāi)足馬力,日夜生產(chǎn)防疫所需物品.已知該廠有兩條不同生產(chǎn)線生產(chǎn)同一種產(chǎn)品各10萬(wàn)件,為保證質(zhì)量,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如下所示:

該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

1)從等級(jí)為優(yōu)秀的樣本中隨機(jī)抽取兩件,記為來(lái)自機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫(xiě)出的分布列,并求的數(shù)學(xué)期望;

2)請(qǐng)完成下面質(zhì)量等級(jí)與生產(chǎn)線產(chǎn)品列聯(lián)表,并判斷能不能在誤差不超過(guò)0.05的情況下,認(rèn)為產(chǎn)品等級(jí)是否達(dá)到良好以上與生產(chǎn)產(chǎn)品的生產(chǎn)線有關(guān).

生產(chǎn)線的產(chǎn)品

生產(chǎn)線的產(chǎn)品

合計(jì)

良好以上

合格

合計(jì)

附:

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線C)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的動(dòng)直線l交拋物線C,兩點(diǎn),且.

1)求拋物線C的方程;

2)若O為坐標(biāo)原點(diǎn)),且點(diǎn)E在拋物線C上,求直線l的傾斜角;

3)若點(diǎn)M是拋物線C的準(zhǔn)線上的一點(diǎn),直線,斜率分別為,,求證:當(dāng)為定值時(shí),也為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“勾股定理”在西方被稱(chēng)為“畢達(dá)哥拉斯定理”.三國(guó)時(shí)期,吳國(guó)的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形,若直角三角形中較小的銳角,現(xiàn)在向該正方形區(qū)域內(nèi)隨機(jī)地投擲100枚飛鏢,則估計(jì)飛鏢落在區(qū)域1的枚數(shù)最有可能是(

A.30B.40C.50D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定直線,定點(diǎn),以坐標(biāo)軸為對(duì)稱(chēng)軸的橢圓過(guò)點(diǎn)且與相切.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)橢圓的弦的中點(diǎn)分別為,若平行于,則斜率之和是否為定值? 若是定值請(qǐng)求出該定值;若不是定值請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股之弦為邊的正方形,其面積稱(chēng)為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱(chēng)為朱實(shí)、黃實(shí),利用×+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+2=2,設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為(

A.134B.866C.300D.188

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地為改善旅游環(huán)境進(jìn)行景點(diǎn)改造.如圖,將兩條平行觀光道l1l2通過(guò)一段拋物線形狀的棧道AB連通(道路不計(jì)寬度),l1l2所在直線的距離為0.5(百米),對(duì)岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點(diǎn),拋物線的對(duì)稱(chēng)軸垂直于l3,且交l3M),在堤岸線l3上的E,F兩處建造建筑物,其中E,FM的距離為1(百米),且F恰在B的正對(duì)岸(即BFl3).

1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;

2)游客(視為點(diǎn)P)在棧道AB的何處時(shí),觀測(cè)EF的視角(EPF)最大?請(qǐng)?jiān)冢?/span>1)的坐標(biāo)系中,寫(xiě)出觀測(cè)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓()的離心率為,以的短軸為直徑的圓與直線相切.

1)求的方程;

2)直線兩點(diǎn),且.已知上存在點(diǎn),使得是以為頂角的等腰直角三角形,若在直線的右下方,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年國(guó)慶節(jié)假期期間,某商場(chǎng)為掌握假期期間顧客購(gòu)買(mǎi)商品人次,統(tǒng)計(jì)了1017002300這一時(shí)間段內(nèi)顧客購(gòu)買(mǎi)商品人次,統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)顧客購(gòu)買(mǎi)商品共5000人次顧客購(gòu)買(mǎi)商品時(shí)刻的的頻率分布直方圖如下圖所示,其中時(shí)間段7001100,11001500,15001900,19002300,依次記作[7,11),[11,15),[15,19),[19,23].

1)求該天顧客購(gòu)買(mǎi)商品時(shí)刻的中位數(shù)t與平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)由頻率分布直方圖可以近似認(rèn)為國(guó)慶節(jié)假期期間該商場(chǎng)顧客購(gòu)買(mǎi)商品時(shí)刻服從正態(tài)分布Nμ,δ2),其中μ近似為,δ3.6,估計(jì)2019年國(guó)慶節(jié)假期期間(101日﹣107日)該商場(chǎng)顧客在12121924之間購(gòu)買(mǎi)商品的總?cè)舜危ńY(jié)果保留整數(shù));

3)為活躍節(jié)日氣氛,該商場(chǎng)根據(jù)題中的4個(gè)時(shí)間段分組,采用分層抽樣的方法從這5000個(gè)樣本中隨機(jī)抽取10個(gè)樣本(假設(shè)這10個(gè)樣本為10個(gè)不同顧客)作為幸運(yùn)客戶,再?gòu)倪@10個(gè)幸運(yùn)客戶中隨機(jī)抽取4人每人獎(jiǎng)勵(lì)500元購(gòu)物券,其他幸運(yùn)客戶每人獎(jiǎng)勵(lì)200元購(gòu)物券,記獲得500元購(gòu)物券的4人中在15001900之間購(gòu)買(mǎi)商品的人數(shù)為X,求X的分布列與數(shù)學(xué)期望;

參考數(shù)據(jù):若TNμσ2),則①PμσT≤μ+σ)=0.6827;②PμT≤μ+2σ)=0.9545;③PμT≤μ+3σ)=0.9973.

查看答案和解析>>

同步練習(xí)冊(cè)答案