【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關系進行了分析研究,分別記錄了2016年12月1日至12月5日每天的晝夜溫差以及實驗室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進行檢驗.
(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.
(2)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關于x的線性回歸方程.
(3)由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的,據(jù)此說明(2)中所得線性回歸方程是否可靠?并估計當溫差為9 ℃時,100顆種子中的發(fā)芽數(shù).
【答案】(1); (2); (3)或.
【解析】
(1)利用古典概型的概率公式求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.(2)利用最小二乘法求y關于x的線性回歸方程.(3)把x=8和x=10代入檢驗,看線性回歸方程是否可靠.把x=9代入回歸方程預測100顆種子中的發(fā)芽數(shù).
(1)將這五組數(shù)據(jù)分別記為1,2,3,4,5,則從中任取兩組共有10個結果,分別為(1,2),
(1,3),(1,4) ,(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),不相鄰的結果有(1,3),(1,4),(1,5),(2,4),(2,5),(3,5),共6種,則所求概率.
(2)由題得,
所以線性回歸方程為.
(3)當x=10時,;
當x=8時,.
所以所得到的線性回歸方程是可靠的.
當x=9時,,故100顆種子中的發(fā)芽數(shù)約為19或20.
科目:高中數(shù)學 來源: 題型:
【題目】若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(mod m),例如10≡4(mod 6).下面程序框圖的算法源于我國古代聞名中外的(中國剩余定理),執(zhí)行該程序框圖,則輸出的n等于( )
A.17
B.16
C.15
D.13
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若執(zhí)行如圖所示的程序框圖,輸出S的值為3,則判斷框中應填入的條件是( )
A.k<6?
B.k<7?
C.k<8?
D.k<9?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點.
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在線段PC上是否存在點M,使二面角M﹣BQ﹣C的大小為60°.若存在,試確定點M的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.
(1)摸出的3個球為白球的概率是多少?
(2)摸出的3個球為2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解小學生的體能情況,抽取某校一個年級的部分學生進行一分鐘跳繩次數(shù)的測試,將數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示.已知圖中從左到右前三個小組的頻率分別為0.1,0.3,0.4,且第一小組的頻數(shù)為5.
(1)求第四小組的頻率;
(2)求參加這次測試的學生的人數(shù);
(3)若一分鐘跳繩次數(shù)在75次以上(含75次)為達標,試估計該年級學生跳繩測試的達標率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二某班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,其可見部分如圖所示.據(jù)此解答如下問題:
(1)計算頻率分布直方圖中[80,90)間的矩形的高;
(2)根據(jù)莖葉圖和頻率分布直方圖估計這次測試的平均分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a,b∈R,|a|≤1.已知函數(shù)f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=exf(x).(14分)
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)已知函數(shù)y=g(x)和y=ex的圖象在公共點(x0 , y0)處有相同的切線,
(i)求證:f(x)在x=x0處的導數(shù)等于0;
(ii)若關于x的不等式g(x)≤ex在區(qū)間[x0﹣1,x0+1]上恒成立,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com