【題目】若執(zhí)行如圖所示的程序框圖,輸出S的值為3,則判斷框中應填入的條件是( )
A.k<6?
B.k<7?
C.k<8?
D.k<9?
【答案】C
【解析】解:根據(jù)程序框圖,運行結(jié)果如下:
S k
第一次循環(huán) log23 3
第二次循環(huán) log23log34 4
第三次循環(huán) log23log34log45 5
第四次循環(huán) log23log34log45log56 6
第五次循環(huán) log23log34log45log56log67 7
第六次循環(huán) log23log34log45log56log67log78=log28=3 8
故如果輸出S=3,那么只能進行六次循環(huán),故判斷框內(nèi)應填入的條件是k<8.
故選:C.
【考點精析】解答此題的關鍵在于理解算法的循環(huán)結(jié)構(gòu)的相關知識,掌握在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細分為兩類:當型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu).
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2sinθ,直線l的參數(shù)方程是 (t為參數(shù)).設直線l與x軸的交點是M,N是曲線C上一動點,求MN的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|3x﹣1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函數(shù)f(x)有最小值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
分類 | 積極參加 班級工作 | 不太主動參 加班級工作 | 總計 |
學習積極性高 | 18 | 7 | 25 |
學習積極性一般 | 6 | 19 | 25 |
總計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態(tài)度是否有關,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)橢圓C:+=1(a>b>0)與x軸交于A、B兩點,點P是橢圓C上異于A、B的任意一點,直線PA、PB分別與y軸交于點M、N,求證:為定值b2﹣a2.
(2)由(1)類比可得如下真命題:雙曲線C:=1(a>0,b>0)與x軸交于A、B兩點,點P是雙曲線C上異于A、B的任意一點,直線PA、PB分別與y軸交于點M、N,則為定值.請寫出這個定值(不要求給出解題過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關系進行了分析研究,分別記錄了2016年12月1日至12月5日每天的晝夜溫差以及實驗室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進行檢驗.
(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.
(2)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關于x的線性回歸方程.
(3)由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的,據(jù)此說明(2)中所得線性回歸方程是否可靠?并估計當溫差為9 ℃時,100顆種子中的發(fā)芽數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com