【題目】設(shè)a,b∈R,|a|≤1.已知函數(shù)f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=exf(x).(14分)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)y=g(x)和y=ex的圖象在公共點(x0 , y0)處有相同的切線,
(i)求證:f(x)在x=x0處的導(dǎo)數(shù)等于0;
(ii)若關(guān)于x的不等式g(x)≤ex在區(qū)間[x0﹣1,x0+1]上恒成立,求b的取值范圍.
【答案】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),
令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.
當x變化時,f'(x),f(x)的變化情況如下表:
x | (﹣∞,a) | (a,4﹣a) | (4﹣a,+∞) |
f'(x) | + | ﹣ | + |
f(x) | ↗ | ↘ | ↗ |
∴f(x)的單調(diào)遞增區(qū)間為(﹣∞,a),(4﹣a,+∞),單調(diào)遞減區(qū)間為(a,4﹣a);
(Ⅱ)(i)證明:∵g'(x)=ex(f(x)+f'(x)),由題意知 ,
∴ ,解得 .
∴f(x)在x=x0處的導(dǎo)數(shù)等于0;
(ii)解:∵g(x)≤ex , x∈[x0﹣1,x0+1],由ex>0,可得f(x)≤1.
又∵f(x0)=1,f'(x0)=0,
故x0為f(x)的極大值點,由(I)知x0=a.
另一方面,由于|a|≤1,故a+1<4﹣a,
由(Ⅰ)知f(x)在(a﹣1,a)內(nèi)單調(diào)遞增,在(a,a+1)內(nèi)單調(diào)遞減,
故當x0=a時,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,從而g(x)≤ex在[x0﹣1,x0+1]上恒成立.
由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.
令t(x)=2x3﹣6x2+1,x∈[﹣1,1],
∴t'(x)=6x2﹣12x,
令t'(x)=0,解得x=2(舍去),或x=0.
∵t(﹣1)=﹣7,t(1)=﹣3,t(0)=1,故t(x)的值域為[﹣7,1].
∴b的取值范圍是[﹣7,1].
【解析】(Ⅰ)求出函數(shù)f(x)的導(dǎo)函數(shù),得到導(dǎo)函數(shù)的零點,由導(dǎo)函數(shù)的零點對定義域分段,列表后可得f(x)的單調(diào)區(qū)間;
(Ⅱ)(i)求出g(x)的導(dǎo)函數(shù),由題意知 ,求解可得 .得到f(x)在x=x0處的導(dǎo)數(shù)等于0;
(ii)由(I)知x0=a.且f(x)在(a﹣1,a)內(nèi)單調(diào)遞增,在(a,a+1)內(nèi)單調(diào)遞減,故當x0=a時,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,從而g(x)≤ex在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.構(gòu)造函數(shù)t(x)=2x3﹣6x2+1,x∈[﹣1,1],利用導(dǎo)數(shù)求其值域可得b的范圍.
【考點精析】關(guān)于本題考查的導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解通過圖像,我們可以看出當點趨近于時,直線與曲線相切.容易知道,割線的斜率是,當點趨近于時,函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即;一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
分類 | 積極參加 班級工作 | 不太主動參 加班級工作 | 總計 |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
總計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運用獨立性檢驗的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進行了分析研究,分別記錄了2016年12月1日至12月5日每天的晝夜溫差以及實驗室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進行檢驗.
(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.
(2)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.
(3)由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的,據(jù)此說明(2)中所得線性回歸方程是否可靠?并估計當溫差為9 ℃時,100顆種子中的發(fā)芽數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標準煤?
(參考:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(13分)
(I)求異面直線AP與BC所成角的余弦值;
(II)求證:PD⊥平面PBC;
(II)求直線AB與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)y= 為奇函數(shù);
②y=2 的值域是(1,+∞)
③函數(shù)y= 在定義域內(nèi)是減函數(shù);
④若函數(shù)f(2x)的定義域為[1,2],則函數(shù)y=f( )定義域為[4,8]
其中正確命題的序號是 . (填上所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||< ),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,且ccosA﹣acosC= b.
(1)其 的值;
(2)若tanA,tanB,tanC成等差數(shù)列,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com