將一個(gè)正方體沿其棱的中點(diǎn)截去兩三個(gè)棱錐后所得幾何體如圖所示,則其俯視圖為( 。
A、
B、
C、
D、
考點(diǎn):簡(jiǎn)單空間圖形的三視圖
專題:空間位置關(guān)系與距離
分析:根據(jù)正方體的幾何特征,分析幾何體俯視圖外輪廓的形狀及截面截正方體表面所得的棱能否看到,進(jìn)而得到答案.
解答: 解:將一個(gè)正方體沿其棱的中點(diǎn)截去兩三個(gè)棱錐后所得幾何體的俯視圖滿足:
外輪廓是一個(gè)正方形,
左上角能看到上底面被截面所成的棱,為實(shí)線,
右下角看不到下底面被截面所成的棱,為虛線,
故選:C.
點(diǎn)評(píng):本題考查考生對(duì)空間立體圖及平面圖射影的抽象考察,熟練掌握三視圖的畫法是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y+1=0關(guān)于y=
1
2
x對(duì)稱的直線l′的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2+4x=0},B={x|x2-ax-6a<0},若A∩B=A,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinθcos2θ在0<θ<
π
2
范圍內(nèi)的最大值是(  )
A、
2
3
9
B、
3
9
C、
2
9
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在花園小區(qū)內(nèi)有一塊三邊長(zhǎng)分別為3米、4米、5米的三角形綠化地,有一只小狗在其內(nèi)部玩耍,若不考慮小狗的大小,則在任意指定的某時(shí)刻,小狗與三角形三個(gè)頂點(diǎn)的距離均超過1米的概率是( 。
A、1-
π
6
B、1-
π
12
C、2-
π
3
D、2-
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-1,0,1},B={x|
1
2
<2x<4},則A∩B=( 。
A、{1}
B、{-1,1}
C、{0,1}
D、{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|-1≤x<2},N={x|x-a≤0},若M∩N≠∅,則a的取值范圍是(  )
A、(-∞,2]
B、(-1,+∞)
C、[-1,+∞)
D、[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,且過點(diǎn)(3,-1).
(1)求橢圓C的方程;
(2)若動(dòng)點(diǎn)P在直線l:x=-2
2
上,過P作直線交橢圓C于M,N兩點(diǎn),使得PA=PN,再過P作直線l′⊥MN,證明:直線l′恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AD為BC邊上的高,已知:AC=b;AB=c,AD=BC,求
b
c
+
c
b
的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案