已知tanα=2,則
2cos(α-
π
2
)sin(
π
2
-α)+sin(
2
-α)
1+sin(π+α)+sin2(α-π)-sin2(α-
π
2
)
=
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:原式利用誘導(dǎo)公式化簡(jiǎn),約分后再利用同角三角函數(shù)間基本關(guān)系變形,將tanα的值代入計(jì)算即可求出值.
解答: 解:∵tanα=2,
∴原式=
2sinαcosα-cosα
1-sinα+sin2α-cos2α
=
cosα(2sinα-1)
sinα(2sinα-1)
=
1
tanα
=
1
2
,
故答案為:
1
2
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)
(2a
2
3
b
1
2
)(-6a
1
2
b
1
3
)
-4a
1
6
b
5
6

(2)4 log220-ln
e
+lg4-lg
1
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)D、E、F分別是△A BC的三邊 BC、C A、A B上的點(diǎn),且
DC
=2
BD
,
CE
=2
EA
,
AF
=2
FB
,則
AD
+
BE
+
CF
BC
( 。
A、互相垂直
B、既不平行也不垂直
C、同向平行
D、反向平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x-1)是定義在R上的奇函數(shù),且在[0,+∞)上是增函數(shù),則函數(shù)f(x)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列有關(guān)命題的說(shuō)法正確的是( 。
A、命題“?x∈R,均有x2-x+1>0”的否定是:“?x0∈R,使得x02-x0+1<0”
B、在△ABC 中,“sinA>sinB”是“A>B”成立的充要條件
C、線性回歸方程y=
b
+a對(duì)應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1,y1)、(x2,y2)、…,(xn,yn) 中的一個(gè)
D、在2×2列聯(lián)表中,ad-bc的值越接近0,說(shuō)明兩個(gè)分類變量有關(guān)的可能性就越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
f(x+3),x<2
log3x,x≥2
,則f(-3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
log0.5(x2-1)
的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
4-x
x-1
+log2(x+1)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)關(guān)于直線x=a和直線x=b對(duì)稱(a≠b),則函數(shù)f(x)的一個(gè)周期T=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案