17.如圖是某幾何體的三視圖,則該幾何體的體積為(  )
A.18B.24C.27D.32

分析 由三視圖還原原幾何體,該幾何體底面是長方體,上面是直三棱柱,分別求其體積后作和得答案.

解答 解:由三視圖還原原幾何體如圖:

該幾何體底面是長方體,上面是直三棱柱,
其體積V=$4×3×\frac{3}{2}+\frac{1}{2}×4×3×\frac{3}{2}=27$.
故選:C.

點評 本題考查由三視圖求幾何體的表面積,關(guān)鍵是由三視圖還原原幾何體,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,a=2,b=$\sqrt{2}$,A=$\frac{π}{4}$,則角B等于( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“有理數(shù)是無限不循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限不循環(huán)小數(shù)”是假命題,推理錯誤的原因是( 。
A.使用了歸納推理B.使用了類比推理
C.使用了“三段論”,但大前提錯誤D.使用了“三段論”,但小前提錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐方程為ρcosθ+ρsinθ=4.
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)求曲線C上的點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.執(zhí)行下面的程序,輸出的結(jié)果是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“a=1”是“函數(shù)f(x)=x2-4ax+3在區(qū)間[2,+∞)上為增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,一個空間幾何體的正視圖和俯視圖都是周長為4,一個內(nèi)角為60°的菱形,俯視圖是圓及其圓心,那么這個幾何體的表面積為(  )
A.B.$\frac{\sqrt{3π}}{2}$C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a>0,函數(shù)f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,當(dāng)x∈[0,$\frac{π}{2}$]時,-5≤f(x)≤1.
(1)求常數(shù)a,b的值;
(2)設(shè)g(x)=f(x+$\frac{π}{2}$)且lg g(x)>0,求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案