已知關(guān)于x的不等式|x+1|+|x-1|≤4m2+
1
m
對m>0恒成立,求實數(shù)x的取值范圍.
考點:絕對值不等式的解法,函數(shù)恒成立問題
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:關(guān)于x的不等式|x+1|+|x-1|≤4m2+
1
m
對m>0恒成立,即為|x+1|+|x-1|≤(4m2+
1
m
min,運用導(dǎo)數(shù)判斷右邊函數(shù)的單調(diào)性,進而得到極小值也為最小值,再由解絕對值不等式的方法,即可解得.
解答: 解:關(guān)于x的不等式|x+1|+|x-1|≤4m2+
1
m
對m>0恒成立,
即為|x+1|+|x-1|≤(4m2+
1
m
min,
由于4m2+
1
m
的導(dǎo)數(shù)為8m-
1
m2
,當m>
1
2
時,導(dǎo)數(shù)大于0,函數(shù)遞增,
當0<m<
1
2
時,導(dǎo)數(shù)小于0,函數(shù)遞減,則m=
1
2
,取得極小值也為最小值,
且為3,
即有|x+1|+|x-1|≤3,
當x≥1時,由2x≤3,解得,x
3
2
,則有1≤x≤
3
2

當x≤-1時,由-x-1+1-x≤3,解得,x≥-
3
2
,則有-
3
2
≤x≤-1
;
當-1<x<1時,由-x-1+1-x≤3即有0≤3成立,則有-1<x<1.
故實數(shù)x的取值范圍是[-
3
2
3
2
]
點評:本題考查不等式的恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,考查導(dǎo)數(shù)的運用,考查絕對值不等式的解法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點A為圓C:(x+2)2+(y-4)2=8上的動點,O為坐標原點,N為OA的中點.
(1)求動點N軌跡L的方程;
(2)若軌跡L的切線在x軸和y軸上的截距相等,求此切線的方程;
(3)從軌跡L外一點P(x1,y1)向該軌跡引一條切線,切點為M,且有|PM|=|PO|,求使得|PM|取得最小值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點M(-2,0),N(2,0),若以點M、N為焦點的雙曲線C過直線x+y=1上的點Q,求實軸最長的雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系xOy中,以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系,已知△ABC三個頂點的極坐標分別為A(2
2
、
4
)、B(4,
π
2
)、C(2,
π
2
),直線l的參數(shù)方程為
x=-2t
y=2t+1
(t為參數(shù)).
(1)求△ABC的外接圓D的極坐標方程;
(2)設(shè)直線l與圓D相交于M、N,求弦長|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2+log3x,x∈[1,9],則函數(shù)y=[f(x)]2+f(x 
1
2
)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+acosx-
1
2
a-
3
2
,x∈R
(Ⅰ)當a=1時,求函數(shù)f(x)的最小值;
(Ⅱ)若f(x)的最大值為1,求實數(shù)a的值;
(Ⅲ)對于任意x∈[0,
π
3
],不等式f(x)
1
2
-
a
2
都成立,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從空間一點P向二面角α-l-β的兩個半平面α,β分別作垂線PE,PF,垂足分別為E,F(xiàn),若二面角α-l-β的大小為60°,則<
PF
PE
>的大小為( 。
A、30°或150°
B、120°
C、60°或120°
D、60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠BAC=90°,P為△ABC所在平面外一點,且PA=PB=PC,證明:平面PBC⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項及Tn關(guān)于n的表達式;
(3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項和Sn,并求使Sn>2012的n的最小值.

查看答案和解析>>

同步練習(xí)冊答案