用數(shù)學(xué)歸納法證明34n+2+52n+1(n∈N)能被14整除時(shí),當(dāng)n=k+1時(shí),對(duì)于34(k+1)+2+52(k+1)+1應(yīng)變形為______.
34(k+1)+2+52(k+1)+1=34(34k+2+52k+1)-56•52k+1
故答案為:34(34k+2+52k+1)-56•52k+1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、用數(shù)學(xué)歸納法證明34n+2+52n+1(n∈N)能被14整除時(shí),當(dāng)n=k+1時(shí),對(duì)于34(k+1)+2+52(k+1)+1應(yīng)變形為
34(34k+2+52k+1)-56•52k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•奉賢區(qū)一模)首項(xiàng)為正數(shù)的數(shù)列{an}滿足an+1=
an2+34
,(n∈N*)

(1)當(dāng){an}是常數(shù)列時(shí),求a1的值;
(2)用數(shù)學(xué)歸納法證明:若a1為奇數(shù),則對(duì)一切n≥2,an都是奇數(shù);
(3)若對(duì)一切n∈N*,都有an+1>an,求a1的取值范圍;
(4)以上(1)(2)(3)三個(gè)問(wèn)題是從數(shù)列{an}的某一個(gè)角度去進(jìn)行研究的,請(qǐng)你類似地提出一個(gè)與數(shù)列{an}相關(guān)的數(shù)學(xué)真命題,并加以推理論證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明34n+1+52n+1(n∈N)能被8整除時(shí),當(dāng)n=k+1時(shí)34(k+1)+1+52(k+1)+1可變形(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

用數(shù)學(xué)歸納法證明34n+1+52n+1(n∈N)能被8整除時(shí),當(dāng)n=k+1時(shí)34(k+1)+1+52(k+1)+1可變形


  1. A.
    56×34k+1+25(34k+1+52k+1
  2. B.
    34k+1+52k+1
  3. C.
    34×34k+1+52×52k+1
  4. D.
    25(34k+1+52k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明34n+2+52n+1(n∈N)能被14整除時(shí),當(dāng)n=k+1時(shí),對(duì)于34(k+1)+2+52(k+1)+1應(yīng)變形為__________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案