15.下列說法中,正確的是④.(填序號)
①若函數(shù)f(x)滿足f(x)<f(x+1)對一切實數(shù)x成立,則f(x)是增函數(shù);
②若函數(shù)滿足|f(-x)|<|f(x)|對一切實數(shù)x成立,則是奇函數(shù)或是偶函數(shù);
③若函數(shù)f(x)滿足f(1-x)=f(x+1)對一切實數(shù)x成立,則f(x)的圖象關(guān)于y軸對稱;
④若函數(shù)f(x)滿足f(1-x)=f(x-1)對一切實數(shù)x成立,則f(x)的圖象關(guān)于y軸對稱.

分析 令f(x)=[x]判斷①;使用分析法判斷②;根據(jù)f(x)的性質(zhì)判斷③;將x換為1-x判斷④.

解答 解:對于①,若f(x)=[x],[x]表示不大于x的整數(shù),
顯然[x]<[x+1],即f(x)<f(x+1),而f(x)不是增函數(shù),故①錯誤;
對于②,若f(x)是奇函數(shù)或偶函數(shù),則|f(-x)|=|f(x)|,與已知矛盾,故②錯誤;
對于③,若f(1-x)=f(x+1),則f(x)的圖象關(guān)于直線x=1對稱,故③錯誤;
對于④,若f(1-x)=f(x-1),則f[1-(1-x)]=f[(1-x)-1],即f(x)=f(-x),
所以f(x)關(guān)于y軸對稱,故④正確.
故答案為④.

點評 本題考查了函數(shù)的性質(zhì),對稱性判斷,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx-ax-$\frac{1}{2}{x^3}({a∈R})$.
(1)若曲線y=f(x)在點(1,f(1))處的切線經(jīng)過點$({3,\frac{9}{2}})$,求a的值;
(2)若f(x)在(1,2)上存在極值,求a的取值范圍;
(3)當(dāng)x>0時,f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若(x+2)n=xn+axn-1+…+bx+c(n∈N*,n≥3),且b=4c,則a的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)全集U={1,3,5},集合A={1,5},則∁UA={3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若冪函數(shù)y=xn(n是有理數(shù))的圖象經(jīng)過點(8,4)和(-8,m),則m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2log3(3-x)-log3(1+x).
(1)求f(x)的定義域;
(2)當(dāng)0≤x≤2時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(x+$\frac{1}{x}$+2)5的展開式中整理后的常數(shù)項為252.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=2$,且$\overrightarrow a•\overrightarrow b=1$.若$\overrightarrow e$為平面單位向量,$({\overrightarrow a+\overrightarrow b})•\overrightarrow e$的最大值為( 。
A.$\sqrt{6}$B.6C.$\sqrt{7}$D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{y≥x+2}\\{\frac{x}{4}+\frac{y}{4}≤1}\\{y≥2-\frac{x}{2}}\end{array}\right.$,則z=($\frac{1}{2}$)2x-y的最小值為$\frac{1}{256}$.

查看答案和解析>>

同步練習(xí)冊答案