【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,如圖.

現(xiàn)在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為_________.

【答案】

【解析】

設圖(3)中最小黑色三角形面積為,求出最大三角形的面積以及陰影部分的面積,利用幾何概型概率公式求解即可.

設圖(3)中最小黑色三角形面積為,

由圖可知圖(3)中最大三角形面積為,

圖(3)中,陰影部分的面積為,

根據幾何概型概率公式可得,圖(3)中隨機選取一個點,則此點取自陰影部分的概率為,

故答案為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對于曲線所在的平面上的定點,若存在以點為頂點的角,使得對于曲線上的任意兩個不同的點恒成立,則稱角為曲線點視角,并稱其中最小的點視角為曲線相對于點點確視角”.已知曲線和圓軸上一點

1)對于坐標原點,寫出曲線點確視角的大;

2)若在曲線上,求的最小值;

3)若曲線和圓點確視角相等,求點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求函數(shù)的單調區(qū)間;

2)設函數(shù),若,且上恒成立,求的取值范圍;

3)設函數(shù),若,且上存在零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】七巧板是古代中國勞動人民發(fā)明的一種中國傳統(tǒng)智力玩具,它由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成.清陸以湉《冷廬雜識》卷一中寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.體物肖形,隨手變幻,蓋游戲之具,足以排悶破寂,故世俗皆喜為之.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設橢圓過右焦點的弦為、過原點的弦為,若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)如圖,以過原點的直線的傾斜角為參數(shù),求圓的參數(shù)方程;

(2)在平面直角坐標系中,已知直線的參數(shù)方程為,(為參數(shù)),曲線的參數(shù)方程為為參數(shù)),若相交于兩點,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y24x焦點F的直線交拋物線于A、B兩點,交其準線于點C,且A、C位于x軸同側,若|AC|2|AF|,則|BF|等于(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)討論的單調性;

)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生成的產品生產線上隨機抽取件產品,測量這批產品的一項質量指標值,由測量結果得如圖所示的頻率分布直方圖:

(1)估計這批產品質量指標值的樣本平均和樣本方差(同一組中的數(shù)據用該組區(qū)間的中點值做代表):

(2)若該種產品的等級及相應等級產品的利潤(每件)參照以下規(guī)則(其中為產品質量指標值):當該產品定為一等品,企業(yè)可獲利元;當該產品定為二等品,企業(yè)可獲利元:當 .該產品定為三等品,企業(yè)將損失元;否則該產品定為不合格品,企業(yè)將損失

i)若測得一箱產品(件)的質量指標數(shù)據分別為:,求該箱產品的利潤;

ii)設事件;事件 事件根據經驗,對于該生產線上的產品,事件發(fā)生的概率分別為,根據以上信息,若產品預計年產量為件,試估計設產品年獲利情況(參考數(shù)據:

查看答案和解析>>

同步練習冊答案