如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的正方形,側(cè)棱PD=a,PA=PC=
2
a
(1)求證:PD⊥平面ABCD;
(2)求二面角P-BC-D的大。
考點(diǎn):二面角的平面角及求法,直線與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(1)由已知推導(dǎo)出PD⊥AD,同理PD⊥CD,由此能證明PD⊥底面ABCD.
(2)由PD⊥面ABCD,得二面角P-BC-D為∠PCD,由此能求出二面角P-BC-D的大小.
解答: (1)證明:因?yàn)樗睦忮FP-ABCD,底面是邊長(zhǎng)為a的正方形,
側(cè)棱PD=a,PA=PC=
2
a,
即PA2=2a2=DA2+PD2=a2+a2,
所以PD⊥AD,同理PD⊥CD,AD∩CD=D,
所以PD⊥底面ABCD.
(2)因?yàn)镻D⊥面ABCD,
所以二面角P-BC-D的平面角為∠PCD,
因?yàn)镻D=a,DC=a,PD⊥DC,
所以,∠PCD=45°,
所以二面角P-BC-D為45°.
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查二面角的大小的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若函數(shù)f(x)=x2+mx-
1
4
為偶函數(shù),且f(cos
B
2
)=0.
(Ⅰ)求角B的大;
(Ⅱ)若△ABC的面積為
15
3
4
,其外接圓半徑為
7
3
3
,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C對(duì)邊的邊長(zhǎng)分別是a,b,c,已知c=2,C=
π
3

(1)若△ABC的面積等于
3
,求a,b;
(2)若sin(A+C)=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(x)=f(x+4),且x∈(0,2]時(shí),f(x)=
3x
3x+1

(1)求f(x)在[-2,2]上的解析式;
(2)判斷f(x)在[0,2]上的單調(diào)性,并給予證明;
(3)當(dāng)λ為何值時(shí),關(guān)于方程f(x)=λ在[-2,2]上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,如圖E、F分別是BB1,CD的中點(diǎn),
(1)求證:D1F⊥平面ADE;
(2)cos<
EF
,
CB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=
x
+1.
(1)用定義證明:f(x)在(0,+∞)上為增函數(shù);
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)數(shù),若f(x)=2f′(x),則
sin2x-sin2x
cos2x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD中,點(diǎn)P是△BCD內(nèi)部或邊界上任一點(diǎn),設(shè)
AP
AB
AD
,則λ+μ的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)邊分別為a,b,c,且c=4
2
,B=45°,面積S=2,則b等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案