已知△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且滿足sinA(
3
cosA+sinA)=
3
2

(Ⅰ)求角A;
(Ⅱ)若a=2
2
,求△ABC面積S△ABC最大值.
考點(diǎn):正弦定理
專題:解三角形
分析:(Ⅰ)化簡(jiǎn)整理原式,利用兩角和公式可求得sin(2A-
π
6
),進(jìn)而求得A.
(Ⅱ)利用余弦定理公式求得bc的范圍,進(jìn)而根據(jù)三角形面積公式求得其最大值.
解答: 解:(Ⅰ)∵sinA(
3
cosA+sinA)=
3
2

3
sinAcosA+sin2A=
3
2
,
3
2
sin2A-
1
2
cos2A=
3
2
,
∴sin(2A-
π
6
)=1,
∵0<A<π,-
π
6
<2A-
π
6
11π
6
,
∴2A-
π
6
=
π
2
,
∴A=
π
3

(Ⅱ)由余弦定理得a2=b2+c2-bc=8,
又b2+c2≥2bc,當(dāng)且僅當(dāng)b=c時(shí)取等號(hào),
∴bc≤8,
∴S△ABC=
1
2
bcsinA=
3
4
bc≤2
3
,
∴三角形ABC的面積的最大值為2
3
點(diǎn)評(píng):本題主要考查了余弦定理的應(yīng)用,三角形恒等變換的應(yīng)用,三角形面積公式的應(yīng)用.注重了對(duì)學(xué)生綜合知識(shí)的靈活運(yùn)用的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y具有線性相關(guān)關(guān)系,測(cè)得(x,y)的一組數(shù)據(jù)如下:(0,1)、(1,2)、(2,4)、(3,5),其回歸方程為
y
=bx+0.9,則b的值等于( 。
A、1.3B、-1.3
C、1.4D、-1.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)是奇函數(shù),且在區(qū)間[-
π
2
,0]內(nèi)單調(diào)遞減,則f(x)可以是( 。
A、sin(π-x)
B、cos(π+x)
C、sin(
π
2
-x)
D、cos(
π
2
+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為sn,且an=Sn-1+2(n≥2),a1=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
log2an
,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整數(shù)k,使得對(duì)于任意的正整數(shù)n,有Tn
k
12
恒成立?
若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,且
cosA-3cosC
a-3c
+
cosB
b
=0
(Ⅰ)證明:c=3a;
(Ⅱ)若B為鈍角,且b=20,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,且b2>a2+c2,
3
a=2bsinA.
(Ⅰ)求角B的大。
(Ⅱ)若b=2
7
,△ABC的面積為2
3
,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某校高三年級(jí)學(xué)生一次數(shù)學(xué)測(cè)試的400份試卷中隨機(jī)抽取若干份試卷作為樣本進(jìn)行分析評(píng)估,抽取的試卷成績(jī)的莖葉圖和頻率分布直方圖都都受到了不同程度的損壞,其可見(jiàn)部分如下,據(jù)此解答下列問(wèn)題:
(Ⅰ)求抽取的成績(jī)?cè)赱80,90)的試卷份數(shù)及樣本數(shù)據(jù)的中位數(shù);
(Ⅱ)若樣本數(shù)據(jù)中得分在[80,90)的數(shù)學(xué)成績(jī)的平均分為85,估計(jì)該校高三年級(jí)學(xué)生此次數(shù)學(xué)測(cè)試的平均成績(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(1)求a,b
(2)討論f(1)和f(-1)是函數(shù)f(x)的極大值還是極小值;
(3)過(guò)點(diǎn)A(0,16)作曲線y=f(x)的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(ax2+
1
x
5的展開(kāi)式中x4的系數(shù)為80,則實(shí)數(shù)a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案