8.已知a,b∈R,則“a+b>2”是“a>1或b>1”( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不必要也不充分條件充要條件

分析 根據(jù)充分必要條件的定義判斷即可.

解答 解:若“a+b>2”,推出“a>1或b>1”,充分條件成立,
若“a>1或b>1”推不出“a+b>2”,如a=2,b=-2,所以不是必要條件,
故選:A.

點評 本題考查了充分必要條件,考查不等式的性質(zhì),是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)$f(x)={cos^2}x+{cos^2}(x-\frac{π}{6})$,x∈R
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求f(x)在區(qū)間$[-\frac{π}{3},\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(α>b>0)經(jīng)過點($\sqrt{2}$,$\sqrt{3}$),且原點、焦點,短軸的端點構(gòu)成等腰直角三角形.
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個交點A,B.且$\overrightarrow{OA}⊥\overrightarrow{OB}$?若存在,求出該圓的方程,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+3ax2-bx,曲線y=f(x)在點(1,f(1))處的切線方程為y=-12x+1
(1)試確定a,b的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.①從甲、乙、丙3名同學中選出2名分別去參加兩個鄉(xiāng)鎮(zhèn)的社會調(diào)查,有多少種不同的選法?
②有4張電影票,要在7人中確定4人去觀看,有多少種不同的選法?
③某人射擊8槍,擊中4槍,且命中的4槍均為2槍連中,則不同的結(jié)果有多少種?
其中組合問題的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,且$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則$\overrightarrow{a}$$•\overrightarrow$=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,sinA=-cosBcosC,且tanBtanC=1-$\sqrt{3}$,求角A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知各項均為正數(shù)的等比數(shù)列{an}滿足a1=2且a1,a3,2a2+6成等差數(shù)列.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足4${\;}^{_{1}-1}$4${\;}^{_{2}-1}$…4${\;}^{_{n}-1}$=(an)${\;}^{_{n}}$(n∈N),證明:數(shù)列{bn}是等差數(shù)列;
(Ⅲ)證明:$\frac{n}{2}$-$\frac{1}{3}$<$\frac{{a}_{1}-1}{{a}_{2}-1}$+$\frac{{a}_{2}-1}{{a}_{3}-1}$+…+$\frac{{a}_{n}-1}{{a}_{n+1}-1}$$<\frac{n}{2}$(n∈N)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|x+a|+|x-3|(a∈R).
(Ⅰ)當a=1時,求不等式f(x)≥x+8的解集;
(Ⅱ)若函數(shù)f(x)的最小值為5,求a的值.

查看答案和解析>>

同步練習冊答案