(本題滿分15分) 如圖,橢圓C: x2+3y2=3b(b>0).
(Ⅰ) 求橢圓C的離心率;
(Ⅱ) 若b=1,A,B是橢圓C上兩點,且| AB | =,求△AOB面積的最大值.
(Ⅰ)解:由x2+3y2=3b,
所以e.                     
(Ⅱ)解:設A(x1y1),B(x2,y2),△ABO的面積為S
如果ABx軸,由對稱性不妨記A的坐標為(,),此時S
如果AB不垂直于x軸,設直線AB的方程為ykxm,
 得x2+3(kxm) 2=3,
即 (1+3k2)x2+6kmx+3m2-3=0,又Δ=36k2m2-4(1+3k2) (3m2-3)>0,
所以  x1x2=-,x1x2,
(x1x2)2=(x1x2)2-4 x1x2,  ①
由 | AB |=及 | AB |=
(x1x2)2,                          ②
結合①,②得m2=(1+3k2)-.又原點O到直線AB的距離為,
所以S,
因此S2[]=[-(-2)2+1]
=-(-2)2,
S.當且僅當=2,即k=±1時上式取等號.又,故S max
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設橢圓的左、右焦點分別為,點滿足.
(1)求橢圓的離心率;
(2)設直線與橢圓相交于A,B兩點.若直線與圓相交于M,N兩點,且|MN|=|AB|,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文科做)(本小題滿分16分)
已知橢圓過點,離心率為,圓的圓心為坐標原點,直徑為橢圓的短軸,圓的方程為.過圓上任一點作圓的切線,切點為
(1)求橢圓的方程;
(2)若直線與圓的另一交點為,當弦最大時,求直線的直線方程;
(3)求的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是橢圓()的兩個焦點, 是橢圓上任意一點,從任一焦點引的外角平分線的垂線,垂足為, 則點的軌跡   (       )     
. 圓     . 橢圓       . 雙曲線      . 拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓M:(x+1)2+y2=8,定點N(1,0),點P為圓M上的動點,若Q在NP上,點G在MP上,且滿足
(I)求點G的軌跡C的方程;
(II)直線l過點P(0,2)且與曲線C相交于A、B兩點,當△AOB面積取得最大值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點及橢圓上任意一點,則最大值為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓上一點P到左焦點的距離為,則P到左準線的距離為_________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知斜率為1的直線 過橢圓的右焦點,交橢圓于兩點,求

查看答案和解析>>

同步練習冊答案