如圖,ABCD-A1B1C1D1是正四棱柱側(cè)棱長為1,底面邊長為2,E是棱BC的中點.

(1)求證:BD1∥平面C1DE;

(2)求三棱錐D-D1BC的體積.

答案:
解析:

  (1)證明:連接D1C交DC1于F,連結(jié)EF

  ∵正四棱柱,∴四邊形DCC1D1為矩形,∴F為D1C中點.

  在△CD1B中,∵E為BC中點,∴EF//D1B.

  又∵D1B面C1DE,EF面C1DE,∴平面

  (2)連結(jié)BD,,∵正四棱柱,∴D1D⊥面DBC.

  ∵DC=BC=2,∴

  ∴三棱錐的體積為


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.
(1)求證:A1F⊥C1E;
(2)當A1、E、F、C1共面時,求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的是
①②④
①②④
.(把你認為正確的結(jié)論都填上)
①BD∥平面CB1D1
②AC1⊥平面CB1D1;
③AC1與底面ABCD所成角的正切值是
2

④二面角C-B1D1-C1的正切值是
2
;
⑤過點A1與異面直線AD與CB1成70°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的結(jié)論是
①②
①②
.(把你認為正確的結(jié)論都填上)
①BD∥平面CB1D1;
②AC1⊥平面CB1D1;
③過點A1與異面直線AD和CB1成90°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD—A1B1C1D1中,點O是B1D1的中點,直線A1C交平面AB1D1于點M,對下列結(jié)論,錯誤的是(    )

A.A、M、O三點共線                      B.A、M、O、A1四點共面

C.A、O、C、M四點共面                 D.B、B1、O、M四點共面

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省江門市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.
(1)求證:A1F⊥C1E;
(2)當A1、E、F、C1共面時,求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

同步練習冊答案