13.某公司每月最多生產(chǎn)100臺警報系統(tǒng)裝置,生產(chǎn)x臺(x∈N*)的總收入為30x-0.2x2(單位:萬元).每月投入的固定成本(包括機械檢修、工人工資等)為40萬元,此外,每生產(chǎn)一臺還需材料成本5萬元.在經(jīng)濟學中,常常利用每月利潤函數(shù)P(x)的邊際利潤函數(shù)MP(x)來研究何時獲得最大利潤,其中MP(x)=P(x+1)-P(x).
(Ⅰ)求利潤函數(shù)P(x)及其邊際利潤函數(shù)MP(x);
(Ⅱ)利用邊際利潤函數(shù)MP(x)研究,該公司每月生產(chǎn)多少臺警報系統(tǒng)裝置,可獲得最大利潤?最大利潤是多少?

分析 (Ⅰ)利用利潤是收入與成本之差,求利潤函數(shù)P(x),利用MP(x)=P(x+1)-P(x),求其邊際利潤函數(shù)MP(x);
(Ⅱ)利用MP(x)=24.8-0.4x是減函數(shù),即可得出結(jié)論.

解答 解:(Ⅰ)由題意知,x∈[1,100],且x∈N*
P(x)=R(x)-C(x)
=30x-0.2x2-(5x+40)
=-0.2x2+25x-40,
MP(x)=P(x+1)-P(x)
=-0.2(x+1)2+25(x+1)-40-[-0.2x2+25x-40]
=24.8-0.4x,
(Ⅱ)∵MP(x)=24.8-0.4x是減函數(shù),
∴當x=1時,MP(x)的最大值為24.40(萬元)

點評 本題考查了函數(shù)的實際應用,考查二次函數(shù)模型,解題策略:構(gòu)造二次函數(shù)模型,函數(shù)解析式求解是關(guān)鍵,然后利用配方法、數(shù)形結(jié)合法等方法求解二次函數(shù)最值,但要注意自變量的實際取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,以O(shè)x軸的非負半軸為始邊作兩個銳角α,β,它們的終邊分別與單位圓交于A,B兩點,已知A,B的縱坐標分別為$\frac{\sqrt{5}}{5}$,$\frac{3\sqrt{10}}{10}$
(1)求α-β;
(2)求cos(2α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.給出下列命題:
①冪函數(shù)y=x0的圖象為一條直線;
②若冪函數(shù)y=xa的圖象過原點,則a>0;
③若冪函數(shù)y=xa(a<0)是奇函數(shù),則y=xa在其定義域內(nèi)一定是減函數(shù);
④冪函數(shù)y=xa圖象不可能出現(xiàn)在第四象限內(nèi),
其中真命題的序號為②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)集合A={x|2x2+3px+2=0},B={x|2x2+x+q=0},其中p,q為常數(shù),x∈R,若A∩B={$\frac{1}{2}$}時,求p,q的值和A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={1,2,3},B={1,m},A∩B=B,則實數(shù)m的值為(  )
A.2B.3C.1或2或3D.2或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)f(x)=loga(x+28)-3(a>0且a≠1)的圖象恒過定點A,若點A的橫坐標為x0,函數(shù)g(x)=a${\;}^{x-{x_0}}}$+4的圖象恒過定點B,則B點的坐標為(-27,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.不等式組$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥-2}\\{x-2y≥-2}\end{array}\right.$的解集為D,若(a,b)∈D,則z=2a-3b的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ln(x+$\sqrt{{x^2}+1}}$)+ax7+bx3-4,其中a,b為常數(shù),若f(-3)=4,則f(3)=-12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.[$\root{3}{(-5)^{2}}$]${\;}^{\frac{3}{4}}$=$\sqrt{5}$.

查看答案和解析>>

同步練習冊答案