設(shè)函數(shù),若時,有極小值,
(1)求實數(shù)的取值;
(2)若數(shù)列中,,求證:數(shù)列的前項和;
(3)設(shè)函數(shù),若有極值且極值為,則與是否具有確定的大小關(guān)系?證明你的結(jié)論.
(1);(2)詳見解析;(3)不具有.
解析試題分析:(1)對函數(shù)求導,再由極小值的定義,代入得到導數(shù)為0以及相應的函數(shù)值,從而得到;(2)由上問得到數(shù)列為遞增的數(shù)列,所以 ,將代入即可得證;(3)先對函數(shù)求導,計算得極小值點.再通過作出比較大小,即構(gòu)造函數(shù).再計算該函數(shù)的極小值,又因為.從而的極值與不具有明確的大小關(guān)系.
試題解析:(1) 1分
3分
4分
(2)由條件和第(1)問可知,函數(shù)在上單調(diào)遞增, 5分
7分
(3),由有極值且的定義域為可知:
異號,極小值點為, 8分
9分
令,構(gòu)造函數(shù),由條件和第(1)問可知:
時,有極小值
而 11分
所以可能大于0或可能等于0或可能小于0,
即的極值與不具有明確的大小關(guān)系. 13分
考點:1.函數(shù)的求導法則;2.函數(shù)的單調(diào)性;3.極值;4.作差法比較大小.
科目:高中數(shù)學 來源: 題型:解答題
甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v()的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,貨車應以多大的速度行駛?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù),曲線通過點(0,2a+3),且在處的切線垂直于y軸.
(I)用a分別表示b和c;
(II)當bc取得最大值時,寫出的解析式;
(III)在(II)的條件下,若函數(shù)g(x)為偶函數(shù),且當時,,求當時g(x)的表達式,并求函數(shù)g(x)在R上的最小值及相應的x值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知函數(shù),.
(1)若恒成立,求實數(shù)的值;
(2)若方程有一根為,方程的根為,是否存在實數(shù),使?若存在,求出所有滿足條件的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)設(shè)(其中是的導函數(shù)),求的最大值;
(2)求證: 當時,有;
(3)設(shè),當時,不等式恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知a為實數(shù),x=1是函數(shù)的一個極值點。
(Ⅰ)若函數(shù)在區(qū)間上單調(diào)遞減,求實數(shù)m的取值范圍;
(Ⅱ)設(shè)函數(shù),對于任意和,有不等式
恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在實數(shù)集R上定義運算:
(Ⅰ)求的解析式;
(Ⅱ)若在R上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)若,在的曲線上是否存在兩點,使得過這兩點的切線互相垂直?若存在,求出切線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在與時,都取得極值.
(1)求的值;
(2)若,求的單調(diào)區(qū)間和極值;
(3)若對都有恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com