分析 (1)根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出單調(diào)區(qū)間,
(2)分別求出端點(diǎn)值和極大值,即可求出最值
解答 解:(1)∵f(x)=lnx-x+1,x>0,
∴f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
令f′(x)=0,解得x=1,
當(dāng)f′(x)>0,即0<x<1,函數(shù)f(x)單調(diào)遞增,
當(dāng)f′(x)<0,即x>1,函數(shù)f(x)單調(diào)遞減,
故函數(shù)f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
(2)由(1)可知,f(x)在[$\frac{1}{2}$,1)上單調(diào)遞增,在(1,2]上單調(diào)遞減,
當(dāng)x=1時,函數(shù)有極大值,極大值為f(1)=0,極大值即為最大值,即最大值為0,
∵f($\frac{1}{2}$)=$\frac{1}{2}$-ln2,f(2)=ln2-1,
由于$\frac{1}{2}$-ln2-ln2+1=$\frac{3}{2}$-2ln2>0,
∴f($\frac{1}{2}$)>f(2),
∴f(x)min=ln2-1.
點(diǎn)評 本題考查了導(dǎo)數(shù)和函數(shù)的極值最值的關(guān)系,掌握求最值的步驟是關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 96 | B. | 108 | C. | 180 | D. | 198 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\sqrt{5}$,1) | B. | [-$\sqrt{5}$,1) | C. | [-2,1) | D. | (-$\sqrt{5}$,-2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | -6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | [0,2) | C. | {0,1} | D. | {0,2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com