分析 (1)由莖葉圖可知,“高個(gè)子”有8人,“非高個(gè)子”有12人,從而可得5人中“高個(gè)子”為2人,“非高個(gè)子”為3人,從而可求至少有1人為高個(gè)子的概率P=1-$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{7}{10}$; (2)由題意可知:ξ的可能取值為0,1,2,3,求出相應(yīng)的概率,可得ξ的分布列與數(shù)學(xué)期望.
解答 解:(1)由莖葉圖可知,“高個(gè)子”有8人,“非高個(gè)子”有12人,
∴按照分層抽樣抽取的5人中“高個(gè)子”為5×$\frac{8}{20}$=2人,“非高個(gè)子”為5×$\frac{12}{20}$=3人,
則至少有1人為高個(gè)子的概率P=1-$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{7}{10}$,
至少有1人是“高個(gè)子”的概率是$\frac{7}{10}$;
(2)由題可知:B大學(xué)的高個(gè)子只有3人,則ξ的可能取值為0,1,2,3;
故P(ξ=0)=$\frac{{C}_{5}^{3}}{{C}_{8}^{3}}$=$\frac{10}{56}$=$\frac{5}{28}$,P(ξ=1)=$\frac{{C}_{5}^{2}{C}_{3}^{1}}{{C}_{8}^{3}}$=$\frac{30}{56}$=$\frac{15}{28}$,P(ξ=2)=$\frac{{C}_{5}^{1}{C}_{3}^{2}}{{C}_{8}^{3}}$=$\frac{15}{56}$,P(ξ=3)=$\frac{{C}_{3}^{3}}{{C}_{8}^{3}}$=$\frac{1}{56}$,
即ξ的分布列為:
ξ | 0 | 1 | 2 | 3 |
P | $\frac{5}{28}$ | $\frac{15}{28}$ | $\frac{15}{56}$ | $\frac{1}{56}$ |
點(diǎn)評(píng) 本題考查莖葉圖的應(yīng)用,考查離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | B. | y=x0與g(x)=$\frac{1}{{x}^{0}}$ | ||
C. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | D. | f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2n-1 | B. | 2n+1-2 | C. | ${2^{\frac{n}{2}}}-\sqrt{2}$ | D. | ${2^{\frac{n-2}{2}}}-\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com