分析 (1)先求出函數(shù)f(x)的導(dǎo)數(shù),根據(jù)f′(1)=0,f(1)=10,聯(lián)立方程組解出即可.
(2)利用(1)求出函數(shù)的導(dǎo)數(shù),求出極值點(diǎn),判斷函數(shù)的單調(diào)性,然后求解函數(shù)的最值.
解答 解:(1)函數(shù)f(x)=x3+ax2+bx+a2
可得f′(x)=3x2+2ax+b,
∴f′(1)=3+2a+b=0,①,
f(1)=1+a+b+a2=10,②,
由①②得:$\left\{\begin{array}{l}{a=4}\\{b=-11}\end{array}\right.$或$\left\{\begin{array}{l}{a=-3}\\{b=3}\end{array}\right.$,
而要在x=1能取到極值,則△=4a2-12b>0,舍去$\left\{\begin{array}{l}{a=-3}\\{b=3}\end{array}\right.$,
所以只有a=4,b=-11.
(2)函數(shù)f(x)=x3+4x2-11x+16,
f′(x)=3x2+8x-11,令f′(x)=0,解得x=1或x=$-\frac{11}{3}$,
x∈(0,1)時(shí),f′(x)<0,函數(shù)是減函數(shù),x∈(1,2)時(shí),
f′(x)>0函數(shù)是增函數(shù),
此時(shí)x=1時(shí)函數(shù)取得最小值,f(1)=10,
f(0)=16,f(2)=18.
函數(shù)f(x)在[0,2]上的值域:[10,18].
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的應(yīng)用,考查解方程組問(wèn)題,是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0) | B. | (0,1] | C. | (0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2+\sqrt{2}}{2}$ | B. | $\frac{2+\sqrt{3}}{2}$ | C. | 1+$\sqrt{2}$ | D. | 1+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com