分析 由正弦定理得c=2a,由此利用余弦定理得a=1,c=2,再求出sinB=$\frac{\sqrt{15}}{4}$,從而能求出△ABC的面積.
解答 解:∵在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,
b=2,cosB=$\frac{1}{4}$,sinC=2sinA,
∴由正弦定理得c=2a,
由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-4}{2ac}$=$\frac{5{a}^{2}-4}{4{a}^{2}}$=$\frac{1}{4}$,
解得a=1,(舍負(fù)),
∴c=2a=2,sinB=$\sqrt{1-(\frac{1}{4})^{2}}$=$\frac{\sqrt{15}}{4}$,
∴△ABC的面積S△ABC=$\frac{1}{2}acsinB$=$\frac{1}{2}×1×2×\frac{\sqrt{15}}{4}$=$\frac{\sqrt{15}}{4}$.
故答案為:1,$\frac{\sqrt{15}}{4}$.
點評 本題考查角的大小、三角形的面積的求法,考查正弦定理、余弦定理、三角形面積公式等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $-\frac{4}{3}$ | C. | $-\frac{3}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17π | B. | 22π | C. | 68π | D. | 88π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com