已知y=
sinx
1+cosx
,x∈(-π,π),求當(dāng)y′=2時的x的值.
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先根據(jù)導(dǎo)數(shù)運(yùn)算法則求導(dǎo),再根據(jù)特殊角的三角函數(shù)值求得角的大小.
解答: 解:∵y=
sinx
1+cosx
,
∴y′=
cosx(1+cosx)-sinx(-sinx)
(1+cosx)2
=
1
1+cosx
=2,
∴cosx=-
1
2
,
∵x∈(-π,π),
∴x=
3
或x=-
3
點(diǎn)評:本題主要考查了導(dǎo)數(shù)的運(yùn)算法則和特殊角的三角形函數(shù)值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0,ω∈Z,0≤φ≤π)是R上的偶函數(shù),其圖象關(guān)于點(diǎn)M(
4
,0)對稱,且在[0,
π
2
]上是單調(diào)函數(shù).
(1)求ω和φ的值;
(2)求這個函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知B、C是兩個定點(diǎn),|BC|=10,且△ABC的周長等于24,求頂點(diǎn)A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人用7把鑰匙去開門,其中只有一把鑰匙能打開門上的鎖,現(xiàn)逐個任取一把鑰匙試開,且打不開的鑰匙不放回,設(shè)X為找到此門鑰匙的開門次數(shù).
(1)列出關(guān)于隨機(jī)變量X的分布列;
(2)求關(guān)于隨機(jī)變量X的期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a+b>0,用分析法證明:
a2+b2
2
2
(a+b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
,寫出S1,S2,S3,S4的歸納并猜想出結(jié)果,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-ax2+(a2-1)x+1在區(qū)間(2,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O是△ABC的外接圓,D是 
AC
的中點(diǎn),BD交AC于E.
(1)若CD=2
3
,O到AC的距離為1,求⊙O的半徑r;
(2)求證:DC2=DE•DB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

盒中裝有大小相同8件正品和2件次品;從中任取兩件,求:
(1)求取出的兩件都是正品的概率.
(2)求取出兩件至少有一個次品的概率.
(3)求取出的兩件都是相同等級產(chǎn)品的概率.

查看答案和解析>>

同步練習(xí)冊答案