分析 (1)求出函數(shù)f(x)的導(dǎo)數(shù),求得切線的斜率,由切線方程可得′(1)=-a=-1,可得a=1,由f(1)=b=0;
(2)求出函數(shù)g(x)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),由點(diǎn)斜式方程,即可得到切線方程.
解答 解(1)因?yàn)閒(1)=b,由點(diǎn)(1,b)在x+y=1上,可得1+b=1可得b=0,
因?yàn)閒′(x)=an(1-x)xn-1-axn,所以f′(1)=-a,
又因?yàn)榍芯x+y=1的斜率為-1,所以-a=-1可得a=1,
所以a=1,b=0;
(2)函數(shù)g(x)=$\frac{{e}^{x}}{a{x}^{2}}$=$\frac{{e}^{x}}{{x}^{2}}$,
g′(x)=$\frac{{x}^{2}{e}^{x}-2x{e}^{x}}{{x}^{4}}$,
即有曲線y=g(x)在點(diǎn)(1,g(1))處的切線斜率為g′(1)=-e,
切點(diǎn)為(1,e),
則曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為y-e=-e(x-1),
即為切線方程ex+y-2e=0.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程,主要考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-\frac{5π}{24}+\frac{1}{2}kπ,\frac{π}{24}+\frac{1}{2}kπ](k∈Z)$ | B. | [$\frac{π}{24}+\frac{1}{2}kπ$,$\frac{7π}{24}+\frac{1}{2}kπ$](k∈Z | ||
C. | [-$\frac{π}{6}$+$\frac{1}{2}$Kπ,$\frac{π}{12}+\frac{1}{2}kπ$](k∈Z) | D. | [$\frac{π}{12}+\frac{1}{2}kπ$,$\frac{π}{3}$+$\frac{1}{2}$kπ](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com