設(shè)函數(shù)f(x)的圖象為一條開口向上的拋物線.已知x,y均為不等正數(shù),p>0,q>0且p+q=1,求證:f(px+qy)<pf(x)+qf(y).
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)出f(x)的解析式,利用基本不等式確定p,q和x,y不等式關(guān)系,代入函數(shù)的解析式化簡整理.
解答: 證明:設(shè)f(x)=x2+ax+b
∵x,y均為不等正數(shù),p>0,q>0,
∴pqx2+pqy2≥2pqxy,
∵x≠y,
∴pqx2+pqy2>2pqxy,
即p(1-p)x2+(1-q)qy2>2pqxy,
∴px2+qy2>p2x2+2pqxy+q2y2,
∴(px2+qy2)+(pax+qay)+(pb+qb)>(px+qy)2+(pax+qay)+b,
∴p(x2+ax+b)+q(y2+ay+b)>(px+qy)2+a(px+qy)+b,
即f(px+qy)<pf(x)+qf(y).
點評:本題主要考查了二次函數(shù)的性質(zhì).考查了學(xué)生分析和推理的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是一次函數(shù),且滿足3f(x+1)-f(x)=2x+9,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖:
分組頻數(shù)頻率
[10,15)mP
[15,20)24n
[20,25)40.1
[25,30)20.05
合計M1
(Ⅰ)求出表中M,p及圖中a的值;
(Ⅱ)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(Ⅲ)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an<0,
a
2
n
+(n-1)an-n=0,
(1)求{an}的通項公式;
(2)求數(shù)列{
an
2n
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)在一個周期上的一系列對應(yīng)值如下表:
x-
π
4
0
π
6
π
4
π
2
4
y01
1
2
0-10
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,AC=2,BC=3,A為銳角,且f(A)=-
1
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出函數(shù)y=2 
1
x
的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),經(jīng)過點(1,e),其中e為橢圓的離心率,F(xiàn)1、F2是橢圓的兩焦點,M為橢圓短軸端點且△MF1F2為直角三角形.
(1)求橢圓C的方程;
(2)設(shè)不經(jīng)過原點的直線l與橢圓C相交于A,B兩點,第一象限內(nèi)的點P(1,m)在橢圓上,直線OP平分線段AB,且|AB|=
3
2
2
,求:直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ae2x+(a+1)x+1,a<-1對任意x1,x2∈R,有f(x1)-f(x2)≥4(e x1-e x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
滿足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),則
b
a
方向上的投影
 

查看答案和解析>>

同步練習(xí)冊答案