已知等差數(shù)列{an}中,Sn為其前n項和,若S2=4,S4=9,則S6=( 。
A、12B、15C、14D、16
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得首項和公差的方程組,解方程組代入求和公式計算可得.
解答: 解:設(shè)等差數(shù)列{an}的公差為d,
則S2=2a1+d=4,S4=4a1+
4×3
2
d=9,
聯(lián)立解得a1=
15
8
,d=
1
4
,
∴S6=6a1+
6×5
2
d=15
故選:B
點評:本題考查等差數(shù)列的求和公式,得出數(shù)列的首項和公差是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2+2x-3|,若關(guān)于x的方程f2(x)-(a+2)f(x)+a2-2a=0有5個不等實根,則實數(shù)a值是( 。
A、2B、4C、2或4D、不確定的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)與y=log3|x|的圖象的交點的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
2
2x+1
(a∈R)
(Ⅰ)判斷函數(shù)f(x)在R上的單調(diào)性,并用單調(diào)函數(shù)的定義證明;
(Ⅱ)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)g(x)=2
1
x
(x>0)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)的定義域為[-2,2],g(x)=f(x-1)-f(3-2x).
(1)求g(x)的定義域;
(2)若f(x)在定義域上是單調(diào)增函數(shù),求不等式g(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-2x,x≥3
2x+1,x<3
則f[f(1)]等于( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=g(x),x∈[-1+m,1+m]為奇函數(shù),則函數(shù)f(x)=x4+mx+5的奇偶性為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=
1
3
,an=(-1)n•2an-1(n≥2),則a5等于( 。
A、-
16
3
B、
16
3
C、-
8
3
D、
8
3

查看答案和解析>>

同步練習(xí)冊答案