20.設(shè)向量$\overrightarrow m$=(-1,2),$\overrightarrow n$=(2,b),若$\overrightarrow m$∥$\overrightarrow n$,則|$\overrightarrow n$|=( 。
A.$\sqrt{5}$B.2$\sqrt{5}$C.5D.20

分析 利用向量共線求出b,然后求解向量的模.

解答 解:向量$\overrightarrow m$=(-1,2),$\overrightarrow n$=(2,b),
若$\overrightarrow m$∥$\overrightarrow n$,4=-b.
則|$\overrightarrow n$|=|(2,-4)|=$\sqrt{20}$=2$\sqrt{5}$  
故選:B.

點(diǎn)評(píng) 本題考查向量共線以及向量的模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.B.C.2π+4D.3π+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某市重點(diǎn)中學(xué)奧數(shù)培訓(xùn)班共有15人,分為兩個(gè)小組,在一次階段考試中兩個(gè)小組成績(jī)的莖葉圖如圖所示,甲組同學(xué)成績(jī)的極差是m,乙組學(xué)生成績(jī)的中位數(shù)是86,則m+n的值是( 。
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.對(duì)于不等式1+$\sqrt{6}$<$\sqrt{3}$+2,$\sqrt{2}$$+\sqrt{7}$<2+$\sqrt{5}$,$\sqrt{3}$+2$\sqrt{2}$<$\sqrt{5}$+$\sqrt{6}$,它們都是正確的.
(Ⅰ) 根據(jù)上面不等式的規(guī)律,猜想$\sqrt{n}$+$\sqrt{n+5}$與$\sqrt{n+2}$+$\sqrt{n+3}$(n∈N+)的大小并加以證明:
(Ⅱ) 若不等式$\sqrt{n+a}$+$\sqrt{n+b}$<$\sqrt{n+c}$+$\sqrt{n+d}$(n∈N*)成立,請(qǐng)你寫出a,b,c,d所滿足的一個(gè)等式和一個(gè)不等式,不必證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2•a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{4{a}_{n}}{n•{2}^{n}}$,求數(shù)列{bn•bn+1}的前2019項(xiàng)和T2019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷得到如下數(shù)據(jù)
 單價(jià)x(元) 8 8.2 8.4 8.6 8.8 9
 銷量y(件) 90 84 83 80 75 68
由表中數(shù)據(jù),求得線性回歸直線方程$\stackrel{∧}{y}$=-20x+$\stackrel{∧}{a}$,若在這樣本點(diǎn)中任取一點(diǎn),則它在回歸直線左下方的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.集合A={x|3<x<5},集合B={x|a-1≤x≤a+2},A⊆B,求a的數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,是某組合體的三視圖,則外部幾何體的表面積為( 。
A.B.12πC.24πD.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A($\sqrt{3}$,1),點(diǎn)B是x軸上一點(diǎn),AB⊥OA,△OAB的外接圓為圓C.
(1)求圓C的方程;
(2)求圓C在點(diǎn)A處的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案