1.等差數(shù)列{an}中,a3+a4+a5=12,則a4=( 。
A.2B.4C.8D.12

分析 由等差數(shù)列的通項公式性質(zhì)得a3+a4+a5=3a4,由此能求出結(jié)果.

解答 解:∵等差數(shù)列{an}中,a3+a4+a5=12,
∴a3+a4+a5=3a4=12,
解得a4=4.
故選:B.

點評 本題考查等差數(shù)列的第4項的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)命題p:函數(shù)$f(x)=lg({a{x^2}-x+\frac{1}{16}a})$的定義域為R;命題q:函數(shù)$f(x)={({a-\frac{3}{2}})^x}$是R上的減函數(shù),如果命題p或q為真命題,命題p且q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.記關(guān)于x的不等式$\frac{x-a}{x+1}$<0的解集為P,不等式|x-1|≤1的解集為Q.
(1)若a=3,求P;
(2)若P∩Q=Q,求正數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.畫出二次函數(shù)f(x)=-x2+2x+3的圖象,并根據(jù)圖象回答下列問題:
(1)比較f(0)、f(1)、f(3)的大小;
(2)若x1<x2<1,比較f(x1)與f(x2)的大;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+ax(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a<0時,求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題p:?x0∈[1,2],x02-4x0+6<0,則¬p為( 。
A.?x∉[1,2],x2-4x+6≥0B.?x0∈[1,2],x02-4x0+6≥0
C.?x∉[1,2],x2-4x+6>0D.?x∈[1,2],x2-4x+6≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若底面邊長為$\sqrt{3}$,高為2$\sqrt{3}$的正三棱柱內(nèi)接于半徑為R的球O,則球O的半徑R的值為( 。
A.2B.$\sqrt{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10..已知O是坐標(biāo)原點,點A(1,0),若點M(x,y)為平面區(qū)域$\left\{\begin{array}{l}x+y≥2\\ x≤1\\ y≤2\end{array}\right.$上的一個動點,則$|{\overrightarrow{OA}+\overrightarrow{OM}}|$的最大值是( 。
A.$\sqrt{5}$B.1C.$2\sqrt{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平行四邊形ABCD中,AB=3,AD=4,則$\overrightarrow{AC}$•($\overrightarrow{AB}$-$\overrightarrow{AD}$)等于( 。
A.-7B.1C.7D.25

查看答案和解析>>

同步練習(xí)冊答案