10.已知函數(shù)f(x)在R上單調(diào)遞增,且函數(shù)f(x-1)是定義在R上的奇函數(shù),則不等式f(x+3)<0的解集為( 。
A.(-∞,-3)B.(4,+∞)C.(-∞,1)D.(-∞,-4)

分析 由函數(shù)f(x-1)是定義在R上的奇函數(shù)課得f(0-1)=f(-1)=0,將不等式f(x+3)<0轉(zhuǎn)化為f(x+3)<f(-1),再利用函數(shù)的單調(diào)性得x+3<-1,解出答案.

解答 解:∵函數(shù)f(x-1)是定義在R上的奇函數(shù),
∴f(0-1)=f(-1)=0,
又∵函數(shù)f(x)在R上單調(diào)遞增,
f(x+3)<0,即f(x+3)<f(-1).
∴x+3<-1,
解得x<-4.
故選D.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性的性質(zhì)及單調(diào)性得應(yīng)用,由f(x-1)為奇函數(shù)得出f(-1)=0時(shí)解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,已知a=8,b=7,B=60°,則S△ABC=6$\sqrt{3}$或10$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=ax2+bx+1是定義在[a+1,2a]上的偶函數(shù),那么a+b的值為( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)常數(shù)a使方程2sin(x+$\frac{π}{3}$)=a在閉區(qū)間[0,2π]上恰有三個(gè)解x1,x2,x3,則x1+x2+x3=$\frac{7π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知α是第一象限角,且sinα=$\frac{4}{5}$.
(I)求cosα;
(Ⅱ)求sin(α+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.等差數(shù)列{an}中,a2=4,a4+a7=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2an-2+n,求{bn}的前n項(xiàng)和Sn
(3)求數(shù)列{$\frac{1}{{{a}_{n}}^{2}-1}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列各函數(shù)中,在(-∞,+∞)上為增函數(shù)的是( 。
A.y=(0.2)xB.y=4-xC.y=3xD.y=($\frac{1}{\sqrt{2}+1}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.拋物線的頂點(diǎn)為A(1,0),焦點(diǎn)為F(0,1),則拋物線的準(zhǔn)線方程為x-y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.(3+x2)(x-$\frac{1}{x}$)6的展開(kāi)式中常數(shù)項(xiàng)為-45.

查看答案和解析>>

同步練習(xí)冊(cè)答案