8.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα-1}\\{y=sinα+1}\end{array}\right.$(α為參數(shù)),點P為曲線C上的動點,O為坐標(biāo)原點,則|PO|的最小值為$\sqrt{2}$-1.

分析 根據(jù)題意,由圓C的參數(shù)方程可得|PO|2=(cosα-1)2+(sinα+1)2,對其化簡變形可得|PO|2≥(3-2$\sqrt{2}$),進而可得|PO|≥$\sqrt{2}$-1,解可得答案.

解答 解:根據(jù)題意,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα-1}\\{y=sinα+1}\end{array}\right.$,
點P為曲線C上的動點,
則|PO|2=(cosα-1)2+(sinα+1)2=(cos2α+sin2α)+2(sinα-cosα)+2=3-2(sinα-cosα)=3-2$\sqrt{2}$sin(α-$\frac{π}{4}$),
分析可得:|PO|2≥(3-2$\sqrt{2}$),
則有|PO|≥$\sqrt{2}$-1,
即|PO|的最小值為$\sqrt{2}$-1;
故答案為:$\sqrt{2}$-1.

點評 本題考查圓的參數(shù)方程,關(guān)鍵是掌握參數(shù)方程的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|2x>1},B={x∈N|x<4},則A∩B=(  )
A.{0,1}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某校高三同寢室的6位同學(xué)在畢業(yè)時互相贈送紀(jì)念品,任意兩們同學(xué)之間相互贈送一件紀(jì)念品為1次交換,且兩們同學(xué)最多交換1交.已知6位同學(xué)之間共進行了13次交換,則只收到4份紀(jì)念品的同學(xué)人數(shù)為( 。
A.2或4B.2或3C.1或4D.1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集為R,集合A={x|y=log2(1-2-x)},B={x|y=$\sqrt{-{x}^{2}+6x-8}$},則A∩∁RB=( 。
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x<2或x>4}D.{x|0<x≤2或x≥4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知四邊形ABCD是梯形,E,F(xiàn)分別是腰的中點,M,N是線段EF上的兩個點,且EM=MN=NF,下底是上底的2倍,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b$,則$\overrightarrow{DN}$=( 。
A.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$\frac{1}{4}\overrightarrow a+\frac{1}{2}\overrightarrow b$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$\frac{1}{4}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(x-1)sinx+2cosx+x.
( I)求曲線y=f(x)在點(0,f(0))處的切線方程.
( II)求函數(shù)f(x)在區(qū)間[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.共享單車是指企業(yè)在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟的一種新形態(tài).一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進行調(diào)查研究,在調(diào)查過程中進行了統(tǒng)計,得出相關(guān)數(shù)據(jù)見下表:
 租用單車數(shù)量x(千輛) 3 4 5 8
 每天一輛車平均成本y(元)3.2  2.4 21.9  1.7
根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:$\stackrel{∧}{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\stackrel{∧}{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計算結(jié)果精確到0.1)(備注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$稱為相應(yīng)于點(xi,yi)的殘差(也叫隨機誤差);
  租用單車數(shù)量x(千輛) 2 3 4 5 8
 每天一輛車平均成本y(元) 3.2   2.4 2 1.9   1.7
 模型甲 估計值$\stackrel{∧}{{y}_{i}}$(1)  2.4 2.1  1.6
 殘差$\stackrel{∧}{{e}_{i}}$(1)  0-0.1  0.1
模型乙 估計值$\stackrel{∧}{{y}_{i}}$ (2)  2.3 21.9  
殘差$\stackrel{∧}{{e}_{i}}$(2)  0.1 0 0 
②分別計算模型甲與模型乙的殘差平方和Q1及Q2,并通過比較Q1,Q2的大小,判斷哪個模型擬合效果更好.
(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場調(diào)查,這個城市投放8千輛時,該公司平均一輛單車一天能收入8.4元;投放1萬輛時,該公司平均一輛單車一天能收入7.6元.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足an+1=3an-an-1(n≥2),a1=a2=1,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項和為Sn,且Sn+an=1,數(shù)列{bn}為等差數(shù)列,且b1+b2=b3=3.
(1)求Sn;
(2)求數(shù)列(anbn)的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案