【題目】求經(jīng)過點(diǎn)A(-1,-2)且到原點(diǎn)距離為1的直線方程.
【答案】x=-1或3x-4y-5=0.
【解析】試題分析:討論斜率不存在時(shí),易得x=-1;當(dāng)過點(diǎn)A的直線不與x軸垂直時(shí),設(shè)所求的直線方程為y+2=k(x+1),由原點(diǎn)到此直線的距離等于1,列方程求斜率即可.
試題解析:
(1)當(dāng)過點(diǎn)A的直線斜率不存在即垂直于x軸時(shí),它到原點(diǎn)的距離為1,所以滿足題設(shè)條件,其方程為x=-1.
(2)當(dāng)過點(diǎn)A的直線不與x軸垂直時(shí),
設(shè)所求的直線方程為y+2=k(x+1),
即kx-y+k-2=0.
因?yàn)樵c(diǎn)到此直線的距離等于1,
所以=1,解之,得k=.
故所求的直線方程為y+2= (x+1),
即3x-4y-5=0.
故所求的直線方程為x=-1或3x-4y-5=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,BC邊上的高所在的直線方程為x﹣2y+1=0,∠A的平分線所在直線的方程為y=0.
(1)求點(diǎn)A的坐標(biāo);
(2)若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,且過點(diǎn).
(1)求橢圓的方程;
(2)若不經(jīng)過點(diǎn)的直線與交于兩點(diǎn),且直線與直線的斜率之和為,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)IEC(國際電工委員會(huì))調(diào)查顯示,小型風(fēng)力發(fā)電項(xiàng)目投資較少,且開發(fā)前景廣闊,但受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測(cè)算,風(fēng)能風(fēng)區(qū)分類標(biāo)準(zhǔn)如下:
風(fēng)能分類 | 一類風(fēng)區(qū) | 二類風(fēng)區(qū) |
平均風(fēng)速m/s | 8.5~10 | 6.5~8.5 |
假設(shè)投資A項(xiàng)目的資金為x(x≥0)萬元,投資B項(xiàng)目資金為y(y≥0)萬元,調(diào)研結(jié)果是:未來一年內(nèi),位于一類風(fēng)區(qū)的A項(xiàng)目獲利30%的可能性為0.6,虧損20%的可能性為0.4;位于二類風(fēng)區(qū)的B項(xiàng)目獲利35%的可能性為0.6,虧損10%的可能性是0.1,不賠不賺的可能性是0.3.
(1)記投資A,B項(xiàng)目的利潤分別為ξ和η,試寫出隨機(jī)變量ξ與η的分布列和期望Eξ,Eη;
(2)某公司計(jì)劃用不超過100萬元的資金投資于A,B項(xiàng)目,且公司要求對(duì)A項(xiàng)目的投資不得低于B項(xiàng)目,根據(jù)(1)的條件和市場(chǎng)調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利潤之和z=Eξ+Eη的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題:
①過點(diǎn)(-1,2)的直線方程一定可以表示為y-2=k(x+1)的形式(k∈R);
②過點(diǎn)(-1,2)且在x軸、y軸截距相等的直線方程是x+y-1=0;
③過點(diǎn)M(-1,2)且與直線l:Ax+By+C=0(AB≠0)垂直的直線方程是B(x+1)+A(y-2)=0;
④設(shè)點(diǎn)M(-1,2)不在直線l:Ax+By+C=0(AB≠0)上,則過點(diǎn)M且與l平行的直線方程是A(x+1)+B(y-2)=0;
⑤點(diǎn)P(-1,2)到直線ax+y+a2+a=0的距離不小于2.
以上命題中,正確的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四邊形OABC的四個(gè)頂點(diǎn)坐標(biāo)分別為O(0,0)、A(6,2)、B(4,6)、C(2,6),直線y=kx(<k<3)分四邊形OABC為兩部分,S表示靠近x軸一側(cè)的那一部分的面積.
(1)求S=f(k)的函數(shù)表達(dá)式;
(2)當(dāng)k為何值時(shí),直線y=kx將四邊形OABC分為面積相等的兩部分?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:Sn=1﹣an(n∈N*),其中Sn為數(shù)列{an}的前n項(xiàng)和. (Ⅰ)試求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足: (n∈N*),試求{bn}的前n項(xiàng)和公式Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=2sin(3x+φ)的圖象向右平移動(dòng) 個(gè)單位,得到的圖象關(guān)于y軸對(duì)稱,則|φ|的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com