[2014·綿陽(yáng)模擬]在平面直角坐標(biāo)系xOy中,橢圓C:=1的左、右焦點(diǎn)分別是F1、F2,P為橢圓C上的一點(diǎn),且PF1⊥PF2,則△PF1F2的面積為________.
9
∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.
由橢圓方程知a=5,b=3,∴c=4.
,
解得|PF1|·|PF2|=18.
∴△PF1F2的面積為|PF1|·|PF2|=×18=9.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn)
(1)求橢圓的方程及其離心率;
(2)過橢圓右焦點(diǎn)的直線(不經(jīng)過點(diǎn))與橢圓交于兩點(diǎn),當(dāng)的平分線為 時(shí),求直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:(x-4)2+(y-m)2=16(m∈N*),直線4x-3y-16=0過橢圓E:=1(a>b>0)的右焦點(diǎn),且被圓C所截得的弦長(zhǎng)為,點(diǎn)A(3,1)在橢圓E上.
(1)求m的值及橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求·的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖).
(1)求點(diǎn)P的坐標(biāo);
(2)焦點(diǎn)在x軸上的橢圓C過點(diǎn)P,且與直線交于A,B兩點(diǎn),若的面積為2,求C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是20,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦點(diǎn)坐標(biāo)為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左、右焦點(diǎn)分別焦距為,且與雙曲線共頂點(diǎn).為橢圓上一點(diǎn),直線交橢圓于另一點(diǎn)
(1)求橢圓的方程;
(2)若點(diǎn)的坐標(biāo)為,求過、三點(diǎn)的圓的方程;
(3)若,且,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,是橢圓的左右焦點(diǎn),且橢圓經(jīng)過點(diǎn).
(1)求該橢圓方程;
(2)過點(diǎn)且傾斜角等于的直線,交橢圓于、兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓C1=1(a>b>0)的左、右焦點(diǎn)分別為為,恰是拋物線C2的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
(1)求C1的方程;
(2)平面上的點(diǎn)N滿足,直線l∥MN,且與C1交于A,B兩點(diǎn),若,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案