分析 (1)根據(jù)題意,由ST的定義,分析可得ST=a2+a4=a2+9a2=30,計(jì)算可得a2=3,進(jìn)而可得a1的值,由等比數(shù)列通項(xiàng)公式即可得答案;
(2)根據(jù)題意,由ST的定義,分析可得ST≤a1+a2+…ak=1+3+32+…+3k-1,由等比數(shù)列的前n項(xiàng)和公式計(jì)算可得證明;
(3)設(shè)A=∁C(C∩D),B=∁D(C∩D),則A∩B=∅,進(jìn)而分析可以將原命題轉(zhuǎn)化為證明SC≥2SB,分2種情況進(jìn)行討論:①、若B=∅,②、若B≠∅,可以證明得到SA≥2SB,即可得證明.
解答 解:(1)當(dāng)T={2,4}時(shí),ST=a2+a4=a2+9a2=30,
因此a2=3,從而a1=$\frac{{a}_{2}}{3}$=1,
故an=3n-1,
(2)ST≤a1+a2+…ak=1+3+32+…+3k-1=$\frac{{3}^{k}-1}{2}$<3k=ak+1,
(3)設(shè)A=∁C(C∩D),B=∁D(C∩D),則A∩B=∅,
分析可得SC=SA+SC∩D,SD=SB+SC∩D,則SC+SC∩D-2SD=SA-2SB,
因此原命題的等價(jià)于證明SC≥2SB,
由條件SC≥SD,可得SA≥SB,
①、若B=∅,則SB=0,故SA≥2SB,
②、若B≠∅,由SA≥SB可得A≠∅,設(shè)A中最大元素為l,B中最大元素為m,
若m≥l+1,則其與SA<ai+1≤am≤SB相矛盾,
因?yàn)锳∩B=∅,所以l≠m,則l≥m+1,
SB≤a1+a2+…am=1+3+32+…+3m-1=$\frac{{3}^{m}-1}{2}$≤$\frac{{a}_{m+1}}{2}$=$\frac{{S}_{A}}{2}$,即SA≥2SB,
綜上所述,SA≥2SB,
故SC+SC∩D≥2SD.
點(diǎn)評(píng) 本題考查數(shù)列的應(yīng)用,涉及新定義的內(nèi)容,解題的關(guān)鍵是正確理解題目中對(duì)于新定義的描述.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com