已知函數(shù)f(x)=
4-2x,x≤1
3x-1,x>1
,則下列式子成立的是( 。
A、f(
1
2
)<f(1)<f(
3
2
B、f(1)<f(
1
2
)<f(
3
2
C、f(
3
2
)<f(1)<f(
1
2
D、f(
1
2
)<f(
3
2
)<f(1)
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用分段函數(shù)求出f(
1
2
),f(1),f(
3
2
)的值,即可判斷三個(gè)數(shù)的大小.
解答: 解:函數(shù)f(x)=
4-2x,x≤1
3x-1,x>1
,
f(
1
2
)=4-2×
1
2
=3
f(1)=4-2×1=2
f(
3
2
)=3
3
2
-1
>4.
∴f(1)<f(
1
2
)<f(
3
2
).
故選:B.
點(diǎn)評:本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x-2|<3},B={x|x2-2x+2m<0}.
(1)若實(shí)數(shù)m=-4,求A∩B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科) 已知點(diǎn)P,Q是△ABC所在平面上的兩個(gè)定點(diǎn),且滿足
PA
+
PC
=
0
,2
QA
+
QB
+
QC
=
BC
,若|
PQ
|=λ|
BC
|
,則正實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:(
a
+
b
)•(
a
-
b
)=0,q:
a
=
b
,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:ax+2y+a+4=0,l2:x+(a+1)y+5=0,l1∥l2,線段AB的兩個(gè)端點(diǎn)分別在指向l1與l2上運(yùn)動,設(shè)AB中點(diǎn)C的坐標(biāo)為(m,n).求m2+n2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則
1
21007
2
1+i
2014=(  )
A、iB、-iC、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
sinπx,x≤0
f(x-1)+1,x>0
,則f(
2
3
)的值為(  )
A、
1
2
B、-
1
2
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A⊆{1,2,3},且集合A的元素中至少含有一個(gè)奇數(shù),則滿足條件的集合A有(  )
A、8個(gè)B、7個(gè)C、6個(gè)D、5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若?α∈R.f(x)=
3
sinωx+cosωx在區(qū)間(α,α+π]上的零點(diǎn)有且只有兩個(gè),則ω的取值集合為
 

查看答案和解析>>

同步練習(xí)冊答案