【題目】某超市為了解顧客的購物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次性購物量 | 1至4件 | 5 至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | x | 30 | 25 | y | 10 |
結(jié)算時(shí)間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(1)確定x,y的值,并求顧客一次購物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;
(2)若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過2.5分鐘的概率.(注:將頻率視為概率)
【答案】
(1)
解:由已知得25+y+10=55,x+30=45,所以x=15,y=20;
將頻率視為概率可得P(X=1)= =0.15;P(X=1.5)= =0.3;P(X=2)= =0.25;P(X=2.5)= =0.2;P(X=3)= =0.1
X的分布列
X | 1 | 1.5 | 2 | 2.5 | 3 |
P | 0.15 | 0.3 | 0.25 | 0.2 | 0.1 |
X的數(shù)學(xué)期望為E(X)=1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9
(2)
解:記A:一位顧客一次購物的結(jié)算時(shí)間不超過2.5分鐘,Xi(i=1,2)為該顧客前面第i位顧客的結(jié)算時(shí)間,則
P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1)
由于各顧客的結(jié)算相互獨(dú)立,且Xi(i=1,2)的分布列都與X的分布列相同,所以
P(A)=0.15×0.15+0.15×0.3+0.3×0.15=0.1125
故該顧客結(jié)算前的等候時(shí)間不超過2.5分鐘的概率為0.1125
【解析】(1)由已知得25+y+10=55,x+30=45,故可確定,y的值,將頻率視為概率,故可求相應(yīng)的概率,由此可得X的分布列與數(shù)學(xué)期望;(2)記A:一位顧客一次購物的結(jié)算時(shí)間不超過2.5分鐘,Xi(i=1,2)為該顧客前面第i位顧客的結(jié)算時(shí)間,則P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1),由于各顧客的結(jié)算相互獨(dú)立,且Xi(i=1,2)的分布列都與X的分布列相同,故可得結(jié)論.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解離散型隨機(jī)變量及其分布列(在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月14日,“共享單車”終于來到蕪湖,共享單車又被親切稱作“小黃車”是全球第一個(gè)無樁共享單車平臺(tái),開創(chuàng)了首個(gè)“單車共享”模式.相關(guān)部門準(zhǔn)備對(duì)該項(xiàng)目進(jìn)行考核,考核的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿意指數(shù)不低于,否則該項(xiàng)目需進(jìn)行整改,該部門為了了解市民對(duì)該項(xiàng)目的滿意程度,隨機(jī)訪問了使用共享單車的名市民,并根據(jù)這名市民對(duì)該項(xiàng)目滿意程度的評(píng)分(滿分分),繪制了如下頻率分布直方圖:
(I)為了了解部分市民對(duì)“共享單車”評(píng)分較低的原因,該部門從評(píng)分低于分的市民中隨機(jī)抽取人進(jìn)行座談,求這人評(píng)分恰好都在的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過考核,并說明理由.
(注:滿意指數(shù)=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程,若變量增加一個(gè)單位時(shí),則平均增加5個(gè)單位;
③線性回歸方程所在直線必過;
④曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;
⑤在一個(gè)列聯(lián)表中,由計(jì)算得,則其兩個(gè)變量之間有關(guān)系的可能性是.
其中錯(cuò)誤的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條直線l1:y=m和l2:y= (m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)A,B,l2與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)C,D.記線段AC和BD在X軸上的投影長(zhǎng)度分別為a,b,當(dāng)m變化時(shí), 的最小值為( )
A.16
B.8
C.8
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,線段的長(zhǎng)度為,在線段上取兩個(gè)點(diǎn),使得,以為一邊在線段的上方做一個(gè)正六邊形,然后去掉線段,得到圖2中的圖形;對(duì)圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長(zhǎng)的和為,現(xiàn)給出有關(guān)數(shù)列的四個(gè)命題:
①數(shù)列是等比贊列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對(duì)任意的正整數(shù),都有;
④存在最大的正數(shù),使得對(duì)任意的正整數(shù),都有.
其中真命題的序號(hào)是__________. (請(qǐng)寫出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),記A(n)=a1+a2+…+an , B(n)=a2+a3+…+an+1 , C(n)=a3+a4+…+an+2 , n=1,2,….
(1)若a1=1,a2=5,且對(duì)任意n∈N* , 三個(gè)數(shù)A(n),B(n),C(n)組成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式.
(2)證明:數(shù)列{an}是公比為q的等比數(shù)列的充分必要條件是:對(duì)任意n∈N* , 三個(gè)數(shù)A(n),B(n),C(n)組成公比為q的等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(﹣∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號(hào)為( )
A.①②
B.③④
C.①③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高0.02萬元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為0.8萬元.
(1)若學(xué)生宿舍建筑為層樓時(shí),該樓房綜合費(fèi)用為萬元,綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和),寫出的表達(dá)式;
(2)為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬元?
【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時(shí)平均綜合費(fèi)用為每平方米萬元
【解析】
由已知求出第層樓房每平方米建筑費(fèi)用為萬元,得到第層樓房建筑費(fèi)用,由樓房每升高一層,整層樓建筑費(fèi)用提高萬元,然后利用等差數(shù)列前項(xiàng)和求建筑層樓時(shí)的綜合費(fèi)用;
設(shè)樓房每平方米的平均綜合費(fèi)用為,則,然后利用基本不等式求最值.
解:由建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬元,
且樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬元,
可得建筑第1層樓房每平方米建筑費(fèi)用為:萬元.
建筑第1層樓房建筑費(fèi)用為:萬元.
樓房每升高一層,整層樓建筑費(fèi)用提高:萬元.
建筑第x層樓時(shí),該樓房綜合費(fèi)用為:.
;
設(shè)該樓房每平方米的平均綜合費(fèi)用為,
則:,
當(dāng)且僅當(dāng),即時(shí),上式等號(hào)成立.
學(xué)校應(yīng)把樓層建成10層,此時(shí)平均綜合費(fèi)用為每平方米萬元.
【點(diǎn)睛】
本題考查簡(jiǎn)單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項(xiàng)和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.
【題型】解答題
【結(jié)束】
20
【題目】已知.
(1)求函數(shù)的最小正周期和對(duì)稱軸方程;
(2)若,求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com