若數(shù)列{an}中,數(shù)學(xué)公式,且對(duì)任意的正整數(shù)p、q都有ap+q=apaq,則an=


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:將p=1,q=n代入ap+q=apaq中,整理可得 =,由等比數(shù)列的定義得,數(shù)列{an}為等比數(shù)列,其中 ,公比q=,故an可求.
解答:∵對(duì)任意的正整數(shù)p、q都有ap+q=apaq,
∴令p=1,q=n得,

數(shù)列{an}為等比數(shù)列,其中 ,公比q=,

點(diǎn)評(píng):本題考查了等比數(shù)列的定義及通項(xiàng)公式,關(guān)鍵是對(duì)p,q科學(xué)賦值,得出數(shù)列{an}為等比數(shù)列.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}中,an=43-3n,則Sn最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)二模)設(shè)數(shù)列{an},對(duì)任意n∈N*都有(kn+b)(a1+an)+p=2(a1+a2…+an),(其中k、b、p是常數(shù)).
(1)當(dāng)k=0,b=3,p=-4時(shí),求a1+a2+a3+…+an;
(2)當(dāng)k=1,b=0,p=0時(shí),若a3=3,a9=15,求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{an}中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.當(dāng)k=1,b=0,p=0時(shí),設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,a2-a1=2,試問:是否存在這樣的“封閉數(shù)列”{an},使得對(duì)任意n∈N*,都有Sn≠0,且
1
12
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
11
18
.若存在,求數(shù)列{an}的首項(xiàng)a1的所有取值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}中,若an隨n的增大而增大,則稱{an}為遞增數(shù)列.設(shè)數(shù)列{an}是等比數(shù)列,則“a1<a2<a3”是{an}為遞增數(shù)列的
充要
充要
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•徐匯區(qū)二模)設(shè)數(shù)列{an}(n=1,2,…)是等差數(shù)列,且公差為d,若數(shù)列{an}中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.
(1)若a1=4,d=2,求證:該數(shù)列是“封閉數(shù)列”;
(2)試判斷數(shù)列an=2n-7(n∈N*)是否是“封閉數(shù)列”,為什么?
(3)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,若公差d=1,a1>0,試問:是否存在這樣的“封閉數(shù)列”,使
lim
n→∞
1
S1
+
1
S2
+…+
1
Sn
)=
11
9
;若存在,求{an}的通項(xiàng)公式,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}中a1=2,點(diǎn)(an,an+1)(n∈N*)都分布在函數(shù)g(x)=
32x
的圖象上,若有函數(shù)f(x)=x(x-a1)(x-a2)…(x-an),當(dāng)n=7時(shí),則f′(0)=( 。

查看答案和解析>>

同步練習(xí)冊答案