2.二次函數(shù)y=ax2+x+1(a>0)的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2
(1)證明:(1+x1)(1+x2)=1;
(2)證明:x1<-1,x2<-1;
(3)若x1,x2滿足不等式|lg$\frac{{x}_{1}}{{x}_{2}}$|≤1,試求a的取值范圍.

分析 (1)根據(jù)韋達(dá)定理求出x1+x2,x1•x2的值,證明即可;
(2)由△>0,求出a的范圍,從而證出結(jié)論;
(3)求出x2=-$\frac{{x}_{1}}{1{+x}_{1}}$,由$\frac{1}{10}$≤$\frac{{x}_{1}}{{x}_{2}}$≤10,得到$\frac{1}{10}$≤-(1+x1)≤10,求出a的范圍即可.

解答 (1)證明:由題意得:
x1+x2=-$\frac{1}{a}$,x1•x2=$\frac{1}{a}$,
∴(1+x1)(1+x2)=x1x2+(x1+x2)+1=1;
(2)證明:由△=1-4a>0,解得:a<$\frac{1}{4}$,
∵(1+x1)(1+x2)=1>0,
而(1+x1)(1+x2)=x1+x2+2=-$\frac{1}{a}$+2<-4+2<0,
∴1+x1<0,1+x2<0,
故x1<-1,x2<-1;
(3)解:x2=-$\frac{{x}_{1}}{1{+x}_{1}}$,|lg$\frac{{x}_{1}}{{x}_{2}}$|≤1,
∵$\frac{1}{10}$≤$\frac{{x}_{1}}{{x}_{2}}$≤10,
∴$\frac{1}{10}$≤-(1+x1)≤10,
∴-11≤x1≤-$\frac{11}{10}$,
a=$\frac{1}{{{x}_{1}x}_{2}}$=-($\frac{1}{{{x}_{1}}^{2}}$+$\frac{1}{{x}_{1}}$)=-${(\frac{1}{{x}_{1}}+\frac{1}{2})}^{2}$+$\frac{1}{4}$,
當(dāng)$\frac{1}{{x}_{1}}$=-$\frac{1}{2}$時(shí),
a的最大值是$\frac{1}{4}$,
當(dāng)$\frac{1}{{x}_{1}}$=-$\frac{1}{11}$時(shí),
a的最小值是$\frac{10}{121}$,
故a的范圍是[$\frac{10}{121}$,$\frac{1}{4}$].

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性、最值問題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=xlnx-k(x-1)
(1)求f(x)的單調(diào)區(qū)間;并證明lnx+$\frac{e}{x}$≥2(e為自然對(duì)數(shù)的底數(shù))恒成立;
(2)若函數(shù)f(x)的一個(gè)零點(diǎn)為x1(x1>1),f'(x)的一個(gè)零點(diǎn)為x0,是否存在實(shí)數(shù)k,使$\frac{x_1}{x_0}$=k,若存在,求出所有滿足條件的k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB=3,AC=AA1=6,AD=CD=5,且點(diǎn)M和N分別為B1C和D1D的中點(diǎn).
(1)求證:MN∥平面ABCD;
(2)求二面角D1-AC-B1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.計(jì)算下列各式:
(1)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)(a>0,b>0)
(2)$2{({lg\sqrt{2}})^2}+lg\sqrt{2}×lg5+\sqrt{{{({lg\sqrt{2}})}^2}-lg2+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=log2(x2+x)則f(x)的單調(diào)遞增區(qū)間是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求函數(shù)y=2log2x+5(2≤x≤4)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f({x^2}-1)={log_m}\frac{{2-{x^2}}}{x^2}(m>1)$
(1)求f(x)的解析式,并判斷f(x)的奇偶性;
(2)比較$f(ln\sqrt{e})$與$f(\frac{1}{3})$的大小,并寫出必要的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.△AOB是直角邊長(zhǎng)為1的等腰直角三角形,在坐標(biāo)系中位置如圖所示,O為坐標(biāo)原點(diǎn),P(a,b)是三角形內(nèi)任意一點(diǎn),且滿足b=2a,過P點(diǎn)分別做OB,OA,AB三邊的平行線,求陰影部分面積的最大值及此時(shí)P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)實(shí)數(shù)x、y滿足約束條件$\left\{\begin{array}{l}x+y≤2\\ x≥y\\ y≥0\end{array}\right.$則目標(biāo)函數(shù)z=2x-y的最大值是4.

查看答案和解析>>

同步練習(xí)冊(cè)答案