【題目】已知函數(shù),曲線在點處的切線為,若時,有極值.
(1)求的值;
(2)求在上的最大值和最小值.
【答案】解: (1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b,
當x=1時,切線l的斜率為3,可得2a+b="0 " ①
當x=時,y=f(x)有極值,則f′()=0,
可得4a+3b+4="0 " ②
由①②解得a=2,b=-4.
由于切點的橫坐標為x=1,∴f(1)=4.
∴1+a+b+c=4.∴c=5………………………………….6分
(2)由(1)可得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4,
令f′(x)=0,得x=-2,x=.
當x變化時,y,y′的取值及變化如下表:
x | -3 | (-3,-2) | -2 | (-2,) | (,1) | 1 | |
+ | 0 | - | 0 | + | |||
y | 8 | 單調增遞 | 13 | 單調遞減 | 單調遞增 | 4 |
∴ y=f(x)在[-3,1]上的最大值為13,最小值為…………………….14分
【解析】試題分析:
(1)利用題意求得實數(shù)a,b,c的值可得函數(shù)f(x)的表達式為f(x)=x3+2x2-4x+5
(2)結合(1)的解析式和導函數(shù)研究原函數(shù)的性質可得y=f(x)在[-3,1]上的最大值為13,最小值為 .
試題解析:
(1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b,
當x=1時,切線l的斜率為3,可得2a+b=0;①
當x=時,y=f(x)有極值,則f′=0,
可得4a+3b+4=0.②
由①②解得a=2,b=-4,
又切點的橫坐標為x=1,∴f(1)=4.
∴1+a+b+c=4.∴c=5.
(2)由(1),得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4.
令f′(x)=0,得x=-2或x=,
∴f′(x)<0的解集為,即為f(x)的減區(qū)間.
[-3,-2)、是函數(shù)的增區(qū)間.
又f(-3)=8,f(-2)=13,f=,f(1)=4,
∴y=f(x)在[-3,1]上的最大值為13,最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)證明:函數(shù)是偶函數(shù);
(2)利用絕對值及分段函數(shù)知識,將函數(shù)解析式寫成分段函數(shù)的形式,然后畫出函數(shù)圖像(草圖),并寫出函數(shù)的值域;
(3)在同一坐標系中畫出直線,觀察圖像寫出不等式的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一塊半橢圓形鋼板,其長半軸為,短半軸為,計劃將此鋼板切割成等腰梯形的形狀,下底是半橢圓的短軸,上底的端點在橢圓上,記,梯形面積為.
(Ⅰ)求面積關于變量的函數(shù)表達式,并寫出定義域;
(Ⅱ)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:指數(shù)函數(shù)f(x)=(2a-6)x在R上是單調減函數(shù);q:關于x的方程x2-3ax+2a2+1=0的兩根均大于3,若p或q為真,p且q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用長為18 m的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題,其中正確的序號是__________________(寫出所有正確命題的序號)
①函數(shù)的圖像恒過定點;
②已知集合,則映射中滿足的映射共有1個;
③若函數(shù)的值域為R,則實數(shù)的取值范圍是;
④函數(shù)的圖像關于對稱的函數(shù)解析式為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x-1|+|x+1|(x∈R).
(1)證明:函數(shù)f(x)是偶函數(shù);
(2)利用絕對值及分段函數(shù)知識,將函數(shù)解析式寫成分段函數(shù)的形式,然后畫出函數(shù)圖象;
(3)寫出函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設p:實數(shù)x滿足,其中,命題實數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com