【題目】用長為18 m的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?

【答案】解:設長方體的寬為xm),則長為2x(m),高為

.

故長方體的體積為

從而

V′x)=0,解得x=0(舍去)或x=1,因此x=1.

0x1時,V′x)>0;當1x時,V′x)<0,

故在x=1Vx)取得極大值,并且這個極大值就是Vx)的最大值。

從而最大體積VV′x)=9×12-6×13m3),此時長方體的長為2 m,高為1.5 m.

答:當長方體的長為2 m時,寬為1 m,高為1.5 m時,體積最大,最大體積為3 m3。

【解析】試題分析:設長方體的長和寬分別為,則高為,所以長方體的體積為, ,令(舍去)或,當時, , 單調(diào)遞增,當時, , 單調(diào)遞減,所以當時,函數(shù)取得最大值,此時長方體的長寬高分別為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設函數(shù)的圖象在點兩處的切線分別為l1l2.若,且,求實數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在實數(shù),使=成立,則稱的不動點.

⑴當時,求的不動點;

(2)當時,函數(shù)內(nèi)有兩個不同的不動點,求實數(shù)的取值范圍;

(3)若對于任意實數(shù),函數(shù)恒有兩個不相同的不動點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關,某數(shù)學興趣小組為了驗證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(男生30人、女生20人),給每位同學立體幾何題、代數(shù)題各一道,讓各位同學自由選擇一道題進行解答,選題情況統(tǒng)計如下表:(單位:人)

立體幾何題

代數(shù)題

總計

男同學

22

8

30

女同學

8

12

20

總計

30

20

50

(1)能否有97.5%以上的把握認為“喜歡空間想象”與“性別”有關?

(2)經(jīng)統(tǒng)計得,選擇做立體幾何題的學生正答率為,且答對的學生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯的學生中任意抽取兩人對他們的答題情況進行研究,求恰好抽到男女生各一人的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線為,若時,有極值.

1)求的值;

2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有學生1 000名,經(jīng)調(diào)查,其中750名同學經(jīng)常參加體育鍛煉(稱為A類同學),另外250名同學不經(jīng)常參加體育鍛煉(稱為B類同學),現(xiàn)用分層抽樣方法(按A類、B類分兩層)從該年級的學生中共抽查100名同學,如果以身高達165 cm作為達標的標準,對抽取的100名學生,得到以下列聯(lián)表:

身高達標

身高不達標

總計

經(jīng)常參加體育鍛煉

40

不經(jīng)常參加體育鍛煉

15

總計

100

(1)完成上表;

(2)能否在犯錯誤的概率不超過0.05的前提下認為經(jīng)常參加體育鍛煉與身高達標有關系(K2的觀測值精確到0.001)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋中裝有大小相同的球10個,其中紅球8個,黑球2個,現(xiàn)從袋中有放回地取球,每次隨機取1個.求:

(1)連續(xù)取兩次都是紅球的概率;

(2)如果取出黑球,則取球終止,否則繼續(xù)取球,直到取出黑球,取球次數(shù)最多不超過4次,求取球次數(shù)的概率分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2014山東.理15】已知函數(shù),對函數(shù),定義關于的對稱函數(shù)為函數(shù)滿足:對于任意,兩個點關于點對稱,若關于對稱函數(shù),且恒成立,則實數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.已知函數(shù)f(x)=x2-2x-3,若x∈[t,t+2]時,求函數(shù)f(x)的最值.

查看答案和解析>>

同步練習冊答案